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Teacher’s Gorner

A Default Bayesian Hypothesis Test for ANOVA Designs

Ruud WETZELS, Raoul P. P. P. GRASMAN, and Eric-Jan WAGENMAKERS

This article presents a Bayesian hypothesis test for analysis
of variance (ANOVA) designs. The test is an application of stan-
dard Bayesian methods for variable selection in regression mod-
els. We illustrate the effect of various g-priors on the ANOVA
hypothesis test. The Bayesian test for ANOVA designs is useful
for empirical researchers and for students; both groups will get
a more acute appreciation of Bayesian inference when they can
apply it to practical statistical problems such as ANOVA. We
illustrate the use of the test with two examples, and we provide
R code that makes the test easy to use.

KEY WORDS: Bayes factor; Model selection; Teaching
Bayesian statistics.

1. INTRODUCTION

Bayesian methods have become increasingly popular in al-
most all scientific disciplines (e.g., Poirier 2006). One important
reason for this gain in popularity is the ease with which Bayesian
methods can be applied to relatively complex problems involv-
ing, for instance, hierarchical modeling or the comparison be-
tween nonnested models. However, Bayesian methods can also
be applied in simpler statistical scenarios such as those that
feature basic testing procedures. Prominent examples of such
procedures include analysis of variance (ANOVA) and the #-
test; these tests are the cornerstone of data analysis in fields
such as biology, economics, sociology, and psychology.

Because Bayesian methods have become more mainstream in
recent years, most technically oriented studies now offer at least
one course on Bayesian inference in their graduate or undergrad-
uate program. Our own experience in teaching one such course
is that students often ask the same questions when Bayesian
model selection and hypothesis testing are introduced. First,
students are interested to know how they can apply Bayesian
methods to testing problems that they face on a regular basis;
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second, students want to know how prior distributions can be
chosen such that a test can be considered default. In this article
we address both questions. We apply the Bayesian method to
ANOVA designs and explain the rationale and impact of several
default prior distributions.

Thus, the first goal of this article is to show how the Bayesian
framework of hypothesis testing with the Bayes factor can be
carried out in ANOVA designs. ANOVA is one of the most
popular statistical methods to assess whether or not two or more
population means are equal—in most experimental settings,
ANOVA is used to test for the presence of a treatment effect.
Because of its importance and simplicity, ANOVA is taught
in virtually every applied statistics course. Nevertheless, the
Bayesian hypothesis testing literature on ANOVA is scant; the
dominant treatment of ANOVA is still classical or frequentist
(e.g., Draper and Smith 1998; Faraway 2002) and, although
the Bayesian treatment of ANOVA is gaining popularity (e.g.,
Gelman et al. 2004; Qian and Shen 2007; Ntzoufras 2009;
Kaufman and Sain 2010), the latter has dealt almost exclusively
with estimation, not testing (for exceptions, see Westfall and
Gonen 1996; Sen and Churchill 2001; Ishwaran and Rao 2003;
Ball 2005; Gonen et al. 2005; Maruyama 2009). This is all the
more surprising because Bayesian hypothesis testing has been
well developed for variable selection in regression models (e.g.,
Liang et al. 2008), of which ANOVA is a special case.

The second goal of this article is to describe the rationale be-
hind a particular family of default priors—g-priors—and to use
these g-priors for default Bayesian tests for ANOVA designs.
We hope this work shows students and experimental researchers
how Bayesian hypothesis tests can be a valid and practical al-
ternative to classical or frequentist tests.

The outline of this article is as follows. In the first section we
briefly cover Bayesian estimation and Bayesian model selection.
In the second section we describe the various g-priors that have
been proposed in the literature on variable selection in regression
models. Finally, we present two worked examples that show
how the regression framework can be applied to one-way and
two-way ANOVA designs.

2. BAYESIAN INFERENCE

2.1 Bayesian Estimation

In Bayesian estimation (e.g., Bernardo and Smith 1994;
Lindley 2000; O’Hagan and Forster 2004), uncertainty about
parameters is quantified by probability distributions. Suppose,
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we have a model M and we wish to estimate the model
parameters . Then, we have to define a prior distribution over
these parameters; p(6|M). When data Y come in, this prior dis-
tribution p(@|M) is updated to yield the posterior distribution
p(@1Y, M) according to Bayes’ rule:

p(Y 10, M)p(6| M)
pY|M)
_ p(Y10, M)p(8I|M)

Jo p(Y 10, M)p(B]M)d6

o« p(Y|0, M)p(0|M).
Hence, the posterior distribution of @ is proportional to the
likelihood times the prior. In Bayesian parameter estimation, the
researcher is interested in the posterior distribution of the model
parameters p(f|Y, M). However, in Bayesian model selection

the focus is on p(Y | M), the marginal likelihood of the data
under model M.

p@O1Y M) =

2.2 Bayesian Model Selection

In Bayesian model selection, competing statistical models or
hypotheses are assigned prior probabilities. Consider two com-
peting models, M and M, with prior probabilities p(M) and
p(Mp).

After observing the data, the relative plausibility of M; and
M, is given by the ratio of posterior model probabilities, that
is, the posterior odds:

pMIIY) _ pMy) p(¥ M)
PM2]Y)  p(Mo) p(Y|Ma)

Hence, the posterior odds are given by the product of the prior
odds and the ratio of marginal likelihoods. The latter compo-
nent is known as the Bayes factor (Jeffreys 1961; Dickey 1971;
Berger and Sellke 1987; Kass and Raftery 1995) and quantifies
the change from prior to posterior odds; therefore, the Bayes fac-
tor does not depend on the prior model probabilities p(M ) and
p(M>) and quantifies the evidence that the data provide for
M versus M.

In linear regression and ANOVA, two models of special in-
terest are the null model, My, that does not include any of the
predictors (but does include the intercept) and the full model,
M, that includes all relevant predictors. In this scenario, the
main difficulty with the Bayes factor is its sensitivity to the
prior distribution for the model parameters under test (Press
et al. 2003; Berger 2006; Gelman 2008).

When there is limited knowledge about the phenomenon un-
der study, the prior distribution for the parameters should be
relatively uninformative. However, to avoid paradoxical results,
the prior distribution cannot be foo uninformative. In particular,
the Jeffreys—Lindley—Bartlett paradox (Bartlett 1957; Jeffreys
1961; Lindley 1980; Shafer 1982; Berger and Delampady 1987;
Robert 1993) shows that with vague uninformative priors on
the parameters under test, the Bayes factor will strongly sup-
port the null model. The reason is that the marginal likelihood
p(Y| M) is obtained by averaging the likelihood over the prior;
when the prior is very spread out relative to the data, a large part
of the prior distribution is associated with very low likelihoods,

decreasing the average. This paradox is illustrated in Figure 3
and will be discussed later in the context of a specific model. The
next section details how, in the context of linear regression and
ANOVA, one can avoid the Jeffreys—Lindley—Bartlett paradox
and nevertheless define prior distributions that are reasonably
uninformative.

3. LINEAR REGRESSION, ANOVA, AND THE
SPECIFICATION OF g-PRIORS

The prior distributions that we will discuss are applicable to
model selection in the regression framework. Assume a response
vector Y of length n, Y = (yy, ..., y,l)T, normally distributed
with mean vector jt = (i1, ..., i4,)", precision ¢, and I,, an
n x n identity matrix,

Y ~ N, I1,/8).

The mean u can be decomposed into an overall common
intercept « and the regression coefficients 8. The mean p then
becomes

r=1a+XB,

where X represents the n x k design matrix and B is the k-
dimensional vector of regression coefficients.

In the ANOVA setting, the independent variables that are con-
trolled in the experiment are called factors, which in turn can
have different levels of intensity. Then, the regression coeffi-
cients are interpreted as level-specific parameters. The design
matrix X is constructed using dummy coding (Draper and Smith
1998). Because the matrix [1,, X] does not necessarily have full
column rank, we need to add a constraint. Here, we adopt the
sum-to-zero constraint. By using this constraint, the intercept is
the grand mean, and each regression coefficient describes the
deviation from this grand mean—consequently, the regression
coefficient of the last level equals minus the sum of the other
regression coefficients.

In the one-way ANOVA, we examine the effect of a categor-
ical variable X on the continuous response variable Y. The null
hypothesis is defined as Hy; all levels have the same mean, and
the alternative hypothesis is defined as H;; at least one of the
levels has a different mean.

We can translate this frequentist test to a Bayesian model
selection situation by comparing the model with all relevant
regression coefficients to the model without these coefficients.
In the remainder of this article we focus on the one-way and
two-way ANOVA and show how these tests can be carried out
in a Bayesian fashion.

The sections below list three default prior distributions. We
focus on prior distributions for variable selection in regression
as this framework provides the basis for the analysis of ANOVA
designs (for more information on Bayesian variable selection
see Leamer 1978; Zellner 1986, 1987; Mitchell and Beauchamp
1988; Chipman 1996; George and McCulloch 1997). The fol-
lowing subsections detail, in historical order, three versions of
the popular g-prior.
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3.1 Zellner’s g-Prior

In the case of linear regression, Zellner’s g-prior (Zellner
1986) corresponds to

8 .
p(Bl¢.g. X) ~ N (0, ;X0 1) g >0,
with Jeffreys’ prior (Jeffreys 1961) on the precision

1
p(P) x e
and a flat prior on the common intercept «. Note that we assume
that the columns of X are centered so that 17 X = 0.

This set of prior distributions is of the conjugate Normal-
Gamma family, and therefore the marginal likelihood can be
calculated analytically. When the design matrix is considered
fixed, we are allowed to use it in our prior variance term as
%(X T X)~1. Recall that the variance of the maximum likelihood
estimator for g, Var(B), equals ¢! (XTX)~L. Hence, the term g
is a scaling factor for the prior: if we choose g to be 1, we give
the prior the same weight as the sample; if we choose g to be 2,
the prior is half as important as the sample; if we choose g to be
n, the prior is 1/nth as important as the sample.

An obvious problem with this prior distribution is how to
set parameter g. If g is set low, then the prior distribution for
B is relatively peaked and informative. If g is set high then this
prior is relatively spread out and uninformative. However, as
described in the previous section, a prior that is too vague can
result in the Jeffreys—Lindley—Bartlett paradox.

Various settings for g have been studied and proposed. A
popular setting is g = n, corresponding to the so-called “unit
information prior.” The intuition is that this prior contains as
much information as present in a single observation (Kass and
Wasserman 1995); the argument is that the precision of the sam-
ple estimate of 8 contains the information of n observations.
Then the amount of information in an imaginary single obser-
vation is this quantity divided by n, hence g = n. Another well-
known choice of g is to set it equal to the square of the number of
predictors of the regression model: g = k? (i.e., the Risk Infla-
tion Criterion, Foster and George 1994). Furthermore, Fernan-
dez, Ley, and Steel (2001) suggested to take g = max{n, k%) as
a “benchmark prior.”

A quantity of interest is the so-called shrinkage factor g /(g +
1). It can be used to estimate the posterior mean of 8, which is
the least squares estimate of 8 multiplied by the shrinkage factor

EIBIY, X, M, gl = —5—p,
g+1
where [i is the least squares estimate of 8. A low value of g
pulls the posterior mean of B to zero, whereas a high value
of g yields results similar to the least squares estimate. Note
that, somewhat confusingly, a low shrinkage factor means more
shrinkage and vice versa.

To compute the Bayes factor in the one-way ANOVA design,
we compare the full model, M f to the null model, M y. Then,
the Bayes factor is given by

BF[Mp : Myl = (14 )" *D2[1 + g(1 — RV,
(1)
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where k equals the number of predictors of M g, n is the sample
size, and R? the coefficient of determination of M (note that,
R? for My equals zero as it contains no predictors).

Equation (1) shows that, in its general formulation, Zellner’s
g-prior is potentially vulnerable to the Jeffreys—Lindley—Bartlett
paradox: when g — oo with n and k fixed, the Bayes factor,
BF[M g : My], will go to 0, favoring the null model regardless
of the observed data (see Figure 3 for an example).

Another problem with the Zellner g-prior is that, when
the evidence in favor of the full model goes to infinity (i.e.,
R? goes to 1), the Bayes factor converges to the upper bound
(1 + g)"=*=D/2_ Lijang et al. (2008) termed this undesirable
property the “information paradox.”

3.2 Jeffreys—Zellner-Siow (ZJS) Prior

To test whether a parameter u is zero or nonzero (with u the
mean of a normal distribution), Jeffreys (1961, pp. 268-270)
suggested to apply a Cauchy prior. The Cauchy prior was the
simplest distribution to satisfy consistency requirements that
Jeffreys considered important for hypothesis testing. One such
requirement is that a researcher does not want to favor one model
over another on the basis of a single datum.

Extending Jeffreys’ suggestion to variable selection in the
regression model, Zellner and Siow (1980) proposed a multi-
variate Cauchy prior on the regression coefficients and a flat
prior on the common intercept. However, as the marginal like-
lihood is not analytically tractable, this approach did not gain
much popularity.

Recently, however, Liang et al. (2008) represented the
JZS prior as a mixture of g-priors, that is, an Inverse-
Gamma(1/2, n/2) prior on g and Jeffreys’ prior on the precision

¢:

1
p(P) x ?

P8l 2. X) o [ N(0. 5T ) piende

2
~3/2,-1/8)

This formulation combines the computational advantages of the
g-prior with the statistical advantages of the Cauchy prior. Note
that again we assume that the columns of X are centered.

By assigning a prior to g, we avoid having to assign g a
specific value; moreover, the prior on g allows us to estimate g
from the data and obtain data-dependent shrinkage. Equation (2)
gives the expected value of the shrinkage factor g/(g + 1) with
the JZS approach:

E[LW,M]
g+1

¢}
= { / (1+ )" P[4 g(1 = R0
0

o]
Xg(—l/z)e—n/(Zg)dg}/{[ (1+g)(n—k—l)/2
0

x [1+ g(l—R2>]<"“/nge"/@g)dg} ¢
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It can be seen from Equation (2), and later from Equation (4),
that the expected value of g/(g + 1) increases with R? (Zeugner
and Feldkircher 2009). Hence, there is less shrinkage when more
variance is explained by the model.

In the JZS approach, the Bayes factor comparing the full
model to the null model is:

(n/2)"?
BF : =
[Mp : My] r1/2)
X /m(] +g)(n—k—1)/2[1+g(l _ R2)]—(}’l—l)/Zg—S/ze—n/(zg)dg‘
0

3)

As pointed out by Liang et al. (2008), the integral is one-
dimensional and easily approximated using standard software
packages such as R (R Development Core Team 2004).

A drawback of the JZS prior is that the Bayes factor is not
analytically available. However, the JZS prior is not vulnerable
to the Jeffreys—Lindley—Bartlett paradox nor to the information
paradox (Liang et al. 2008).

3.3 Hyper-g Priors

As an alternative to the JZS prior, Liang et al. (2008) proposed
a family of prior distributions on g and termed this the hyper-g
approach:

p(g) = %(1 +9) ™ g>0,

which is a proper distribution if a > 2 (Strawderman 1971; Cui
and George 2008). Because this distribution leads to indetermi-
nate Bayes factors when a < 2, Liang et al. (2008) studied the
behavior of this prior for 2 < a < 4. Interestingly, this family of
priors on g corresponds to the following prior on the shrinkage
factor g/(1 + g):

g a
£ e (1.5 -1).
1+g 2

By choosing a, one can tune the prior on the shrinkage factor.
When a = 4, the prior is uniform between O and 1, whereas
when a is very close to 2, the prior distribution for the shrinkage
factor will have most mass near 1. Figure 1 shows the effect
of various a on the prior distribution for the shrinkage fac-
tor g/(g + 1). Furthermore, Dellaportas, Forster, and Ntzoufras
(in press) showed that the posterior densities of the parameters
are, in terms of posterior shrinkage, insensitive to the choice
of a within the recommended range. Only for very high values
of a (in their simple linear regression example, a ~ 20) was
posterior shrinkage considerable.

The expected value of the shrinkage factor g /(g + 1) with the
hyper-g approach is

o[
g+1
2 oF[(n—1)/2,2;(k+a)/2+ 1; R?]
~k+a o2Fi[(n—1/2,1;(k+a)/2; R?]

G

where , Fi(a, b;c; z) is the Gaussian hypergeometric function
(Abramowitz and Stegun 1972)

[SO R VR VR VR )
| LR L Ly L
NSRS
N O ()]

Density

\

r 1

0 g/(g+1) 1

Figure 1. Effect of parameter a on the shrinkage factor g/(g + 1).
When a = 4, the prior is uniform between 0 and 1, whereas when a is
very close to 2, the prior distribution for the shrinkage factor has most
mass near 1. Higher values for g/(g + 1) result in less shrinkage.

2Fi(a, b;c;2)
B F(C) 1 lb_l(l _ t)c—b—l
 T(c—b)®) J, (1 —tz)2

Just as with the JZS prior, the hyper-g approach estimates g and
allows for data-dependent shrinkage.

In order to compare the two models that are important in the
one-way ANOVA design, we need to calculate the Bayes factor
(note that, this Bayes factor is also available in closed form using
the Gaussian hypergeometric function):

dt ¢>b>0.

BF[MF . MN] = %/ (1 + g)(n—k—l—a)/Z
0
X [1 + g(l — Rz)]f(nfl)/zdg. (5)

Just as with the JZS prior, the hyper-g approach is not vulnerable
to the Jeffreys—Lindley—Bartlett paradox, nor to the information
paradox (when a < n — k + 1, Liang et al. 2008).

4. A BAYESIAN ONE-WAY ANOVA

To illustrate the differences between the various priors and
the effects they have on the Bayes factor for ANOVA designs,
we first discuss the one-way ANOVA. We follow Box and Tiao
(1973) and use example data from an experiment that was set
up to investigate to what extent yield of dyestuff differs between
batches. The experiment featured six batches with five observa-
tions each. Figure 2 shows the box and whisker plot of yield of
dyestuff for the different batches. The left plot shows the origi-
nal data from Box and Tiao (1973). To illustrate the behavior of
the Bayes factor when the null hypothesis is true, the right plot
shows the same data but with equal means (i.e., the difference
between the batch mean and the overall mean was subtracted
from the batch data).

First, we carried out a classical one-way ANOVA to compute
the F statistic and the corresponding p-value for both datasets.
For the original dataset, we compute F(5,24) =4.60, p =
0.004, suggesting that at least one of the batches has a different
yield. In the modified dataset with equal means, we compute
F(5,24) =0, p =1, suggesting that the yield of dyestuff is
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Figure 2. Boxplots of yield of dyestuff per batch. The left plot (orig-
inal data) shows the original data from Box and Tiao (1973). The right
plot (modified data) shows the same data but with the difference be-
tween the batch mean and the overall mean subtracted from the batch
data.

equal for all batches, although such an inference in favor of the
null hypothesis is not warranted in the Fisherian framework of
p-value significance testing.

Next, we designed a Bayesian hypothesis test to contrast two
models. The full model, Mg, contains a grand mean « and
the predictors for batches 1-5. The predictor for batch 6 is
omitted because of the sum-to-zero constraint. The null model,
My, contains no predictors. Therefore, our test concerns the
following two models:

Mpip=Loa+ X181+ Xofr + X383 + XyBs + Xsp5
My =1,a.

The results from the Bayesian hypothesis test for the data
with unequal group means, reported in Table 1, show that the
two Zellner g-priors and the JZS prior yield only modest Bayes
factor support in favor of Mp; the two hyper-g priors yield
more convincing support in favor of Mp: overall, the results
suggest that the data may be too sparse to allow an unambiguous
conclusion. Importantly, a Bayes factor of 3 arguably does not
inspire as much confidence as one would glean from a p-value
as low as 0.004 (Berger and Sellke 1987). This result highlights
the general conflict between Bayes factors and p-values in terms
of their evidential impact (e.g., Edwards, Lindman, and Savage
1963; Sellke, Bayarri, and Berger 2001).

When the models are compared using the modified data,
Table 1 shows that the two Zellner g-priors and the JZS prior
yield considerable Bayes factor support in favor of the null

Table 1. Bayes factors and shrinkage factors for the one-way ANOVA
example on the dyestuff data, see Figure 2. The Bayes factor compares
the full model to the null model, testing for a main effect of batch.

Unequal means Equal means
Prior BFpv  Elg/(g + DIY] BFp.n E[g/(g + DIY]
Zellner g = n 2.0 0.97 1.87 x 10~ 0.97
Zellner g = k? 29 0.96 2.90 x 10~ 0.96
178 3.1 0.90 8.51 x 1074 0.86
Hyper-g a = 3 9.9 0.71 0.17 0.25
Hyperga =4  10.1 0.65 0.29 0.22
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Figure 3. An illustration of the Jeffreys—Lindley—Bartlett paradox
when the Zellner g-prior is applied to the dyestuff data from Box and
Tiao (1973). When g increases from 1 to 4, the Bayes factor in favor
of the full model increases as well. By increasing g much further,
the Bayes factor can be made arbitrarily close to 0, signifying infinite
support for the null model.

model M y; the two hyper-g priors also provide evidence in fa-
vor of My, albeit less extreme. Moreover, the relation between
R? and the shrinkage factor now becomes clear: for each prior
where g is estimated (i.e., JZS, hyper-g with a = 3, and hyper-g
with @ = 4), the shrinkage factor is lower when the null model
is preferred, as is the case for the modified data.

Finally, we use the original dyestuff data with unequal means
to illustrate the Jeffreys—Lindley—Bartlett paradox for the one-
way ANOVA model. Under Zellner’s g-prior with g =n or
g = k?, the Bayes factor was in favor of the full model. However,
Figure 3 shows that by increasing g the Bayes factor can be made
arbitrarily close to 0, indicating impressive evidence in favor of
the null model.

5. A BAYESIAN TWO-WAY ANOVA

To illustrate the Bayesian two-way ANOVA, we use a slightly
more complex example from Faraway (2002). As part of an
investigation of toxic agents, a total of 48 rats were allocated
to three poisons (I, II, III) and four treatments (A, B, C, D).
The dependent variable is the reciprocal of the survival time
in tens of hours, which can be interpreted as the rate of dying.
Figure 4 shows the box-and-whisker plot of the survival times
in the different experimental conditions.

6_ i
TR—— -
1 ]
] I
o e
£4 _5_ N
5 | T — H na
g ! s = ;
82 [ ] 1 .
1 1 S T
— —_ e —
0_ d
| I 1 A B C D
Poison Treatment

Figure 4. Rate of dying per poison and per treatment. Poison group I
(the reference level for poison) has a mean of 1.80; the means of groups
I and Il are 0.47 and 2.00 higher, respectively. Treatment group A (the
reference level for treatment) has a mean of 3.52; the means of groups
B, C, and D are 1.66, 0.57, and 1.36 lower, respectively.
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First, we carried out a classical two-way ANOVA to com-
pute the F statistics and the corresponding p-values. First, we
investigate whether the interaction terms should be incorporated
in the model. We compute F(6,36) = 1.1, p =~ 0.39, suggest-
ing that poison and treatment do not interact, although, again,
such inference in favor of the null hypothesis is not warranted
in the Fisherian framework of p-value significance testing.

Because the interaction effects were not significant, we re-
move them from the model. Then, for the main effect of treat-
ment, we compute F(3,42) = 27.9, p < 0.001, suggesting that
at least one of the treatments has an effect on rate of dying. For
the main effect of poison we compute F(2,42) =717, p <
0.001, suggesting that at least one of the poisons has an effect
on rate of dying.

Again, we compare the classical results to the Bayesian alter-
natives. We define the necessary models that are needed to test
for each of the main effects and for the interaction effects. To
test for the effect of the interaction terms we define two models:
the full model containing the main and interaction effects M pr,
and the same model without the interaction effects M p_. 7. To
test for the main effects we define the no-interaction model with
the effects of treatment M 7 ; the no-interaction model with the
effects of poison M p; and the null model M.

Mprip=1a + X814+ X1 1Bri+XaBa+XpBp+Xchc
+ XrxaBixa+XixeBixp+XixcBixc

+ XirxaBrixa+X1xBBiixp+XiixcBrixc,

Mpyr i p=la + X;B1+X11B11+XaBa+XpBs+Xche,
Myr o p=1,0 + Xafa + XpBp + XcBc.
Mp i p=la + X181 + X181,
My p=1,a.

We compare the reduced models to the larger model to test for
the effect of the predictors that were left out. If the larger model
is preferred over the reduced model then the tested effects mat-
ter. However, these models cannot be compared directly using
the methods outlined above, as these methods always feature
the null model. Instead, we first calculate the Bayes factor com-
paring the larger model M to the null model, BF[M : My],
and the reduced model My to the null model, BE[ M : My].
The desired Bayes factor, BF[M : Mg], is then obtained by
taking the ratio of Bayes factors

BF[ML : MN]

BF[ML : MR] = m

We do not present the shrinkage factors because the model
comparison is not between the null model and the full model
but between two models with many predictors each.

A test for the interaction involves the comparison between
M pr and M p, 1. Table 2 shows the results for the Bayes factors
that test for the presence of the interaction terms. The different
priors do not change the overall conclusion: all priors support
the model without the interaction terms. Hence, we drop the
interaction terms from the ANOVA model and proceed with the
main effects only.

By comparing M pr to Mp, we can test for a main effect
of treatment. Table 2 shows that all Bayesian hypothesis tests

Table 2. Bayes factors for the two-way ANOVA for the rats dataset
from Faraway (2002) plotted in Figure 4. The Bayes factor compares
the relevant models to each other to test for main effects of poison and
treatment, and their interaction.

Prior BFpr.pt1 BFpir:p BFpir:r

Zellner g = n 2.61 x 107% 6.87 x 1077 3.09 x 102
Zellner g = k? 1.45 x 1079 3.41 x 10% 4.36 x 10!
JZS 5.37 x 107% 4.52 x 10%7 1.24 x 102
Hyper-ga =3 9.41 x 107% 2.95 x 1077 1.81 x 10!
Hyper-g a = 4 1.34 x 10703 2.07 x 1077 6.72 x 100

favor the model that includes the treatment effect, regardless of
the specific choice of prior distribution.

By comparing Mp.r to M7 we can test for a main effect
of poison. The Bayesian hypothesis tests show that all methods
favor the full model over the null model, regardless of the spe-
cific choice of prior distribution (see Table 2). The support for
the model with a main effect of poison is considerably higher
then the support for the main effect for treatment.

6. CONCLUSION

ANOVA is one of the most often-used statistical methods
in the empirical sciences. However, Bayesian hypothesis tests
are rarely conducted in ANOVA designs; instead, most the-
oretical development has concerned the more general prob-
lem of selecting variables in regression models (e.g., Mitchell
and Beauchamp 1988; George and McCulloch 1997; Kuo
and Mallick 1998; Casella and Moreno 2006; O’Hara and
Sillanpdd 2009). Here we showed how the regression frame-
work can be seamlessly carried over to ANOVA designs, at the
same time illustrating various default prior distributions, such
as Zellner’s g-prior, the JZS approach, and the hyper-g approach
(for a similar approach see Bayarri and Garcia-Donato 2007).

Of course, other Bayesian model specifications for ANOVA
are possible; ours has the advantage that it follows directly
from the regression approach that has been studied in detail. A
further didactical advantage is that many students are already
familiar with linear regression and the extension to ANOVA is
conceptually straightforward. In addition, software programs
implemented in R make it easy for students and teachers to
apply Bayesian regression and ANOVA to inference problems
of practical interest; in addition, this software allows users to
compare the substantive Bayesian conclusions to those drawn
from the classical p-value approach. In general, the software
implementation of the theoretical framework provides students
with the opportunity of considerable hands-on experience with
Bayesian hypothesis testing, something that is likely to increase
not only their understanding, but also their motivation to learn.

We feel it is important for students to realize that there is likely
no single correct prior distribution; in fact, it can be informative
to use different priors in a sensitivity analysis. If different plau-
sible prior distributions lead to different substantive conclusions
it is best to acknowledge that the data are ambiguous.

Although not the focus of this article, post hoc comparisons
can easily be accommodated within the present framework.
For instance, one might be interested in testing which group
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mean is different from the reference category mean. Then it
is straightforward to calculate a Bayes factor to compare those
means, using a procedure resembling a Bayesian #-test (Gonen
et al. 2005). Another possibility is to apply model averaging
and calculate an inclusion probability for each predictor over
all possible models (Clyde 1999; Hoeting et al. 1999).

Note that, although the Bayes factor already has a dimension
penalty built in—sometimes called the Bayesian Ockham’s ra-
zor (Berger and Jefferys 1992)—this is not a penalty against
multiple comparisons. To correct for multiple comparisons, the
prior on the model itself must be chosen appropriately (see
Stephens and Balding 2009; Scott and Berger 2010, and refer-
ences therein).

In sum, we have outlined a default Bayesian hypothesis test
for ANOVA designs by a direct and simple extension of the
framework for variable selection in regression models. In the
course of doing so we have discussed three of the most popular
default priors. We hope that empirical researchers and students
can better appreciate and understand Bayesian hypothesis test-
ing when they see how it can be applied to practical research
problems for which ANOVA is often the method of choice.

APPENDIX: R FUNCTIONS TO COMPUTE THE
ANOVA BAYES FACTOR

#Hit#

# For all functioms:

# y is the response vector

# x is the design matrix

# R-scripts with the ANOVA examples can be
found at

# www.ruudwetzels.com

#i##

## (1) Function to compute the Bayes Factor
## with Zellner’s g-prior prior

zellner.g = function(y, x, g){
output = matrix(,1,2)
colnames (output) = c(‘BF_10’,‘g/(g+1)’)
n = length(y)
r2 = summary( lm(y ~ x) )$r.squared
k = dim(x)[2] - 1
output[1] = ( 1+g )" ( (n-k-1)/2 )
*( 1+g*x(1-r2) )" (-(n-1)/2)

(1+g) ~ ((n-k-1) /2) * (L1+g* (1-r2) )~ (- (n-1) /2)
*xg~ (-3/2) xexp(-n/(2%g)) }
output[1] = ((n/2)"(1/2)/gamma(1/2))

xintegrate (BF.integral,0, Inf ,n=n,k=k,r2=r2)

$value

shrinkage.integral=function(g,n=n,k=k,
r2=r2){

(1+g) " ((n-k-1-2) /2) * (1+g* (1-r2) ) " (-(n-1) /2)
*g~ (1-3/2) *xexp(-n/(2%g)) }

g.=integrate(shrinkage.integral,0,Inf,n=n,
k=k,r2=r2)$value

output[2] = g. / integrate(BF.integral,O,
Inf,n=n,k=k,r2=r2)$value
return(output) }

## (3) Function to compute the Bayes Factor
## with Liang et al. hyper-g prior

hyper.g = function(y, x, a){

output = matrix(,1,2)

colnames (output) = c(‘BF_10’,‘g/(g+1)°’)
n = length(y)

r2 = summary( lm(y ~ x) )$r.squared

k = dim(x) [2]-1

BF.integral=function(g, n=n, k=k, a=a,
r2=r2){
(1+g) " ((n-k-1-a) /2) * (1+g* (1-12) ) " (-(n-1)/2) }

output [1]=((a-2)/2)*integrate(BF.integral,O,
Inf,n=n,a=a,k=k,r2=r2)$value
output [2]=(2/ (k+a) ) * (f21hyper ((n-1)/2,2,

(k+a)/2+1,r2) /f21hyper ((n-1)/2,1, (k+a)/2,r2))

return(output) }

[Received December 2010. Revised April 2012. ]
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