
Python code design and 
documentation

Increasing the usability of your code
Tristan Kuehn



Intro

● Once you know enough Python to get what you need done, it can be tricky to 
know how to improve your code

● Ideally, your code will be readable, correct, and usable.
● When possible, it’s a good practice to share any analysis code alongside a 

paper
○ You get the most value out of this practice when others can understand and use the code!

● There are lots of concrete tools and techniques you can use here
● To a less experienced user, it can be hard to find and apply them
● This will be a survey of these tools and techniques at a high level
● I won’t get into installation, but most IDEs will have some support built in.



Readability Can you understand what this code 
is doing?



General points on readability

● It takes a lot longer and is harder to work with code that’s difficult to 
understand

● As you’re writing your code you know it better than anyone
○ Don’t just assume it’s easy to understand because of this!
○ Put yourself in a naive user’s shoes, or ask a colleague to take a look at it.

● If you come back to some code you’ve written after a couple of months or 
longer, you are a naive user again!

● This is an art more than a science, but there are some tools and heuristics 
you can use for help



Names

● Descriptive names go a long way toward making your code readable
● Some tension between clarity and length

○ n is usually not a good name, but neither is 
number_of_voxels_in_my_region_of_interest

● Python guidelines for case: PEP 8
● Functions/methods should be verbs in imperative voice

○ print, not printer or prints
● This can be hard!

○ “There are only two hard things in Computer Science: cache invalidation and naming things.”



Code formatters

● It’s a huge pain to manually keep up consistent formatting in a project.
● How to split long lines in different situations? Single quotes or double quotes? 

How many blank lines? Where to put parentheses?
● A code formatter handles all these concerns automatically.
● Popular examples: black, autopep8
● Well-integrated in IDEs, can be configured to run automatically or on demand

https://black.readthedocs.io/en/stable/index.html
https://github.com/hhatto/autopep8


Black example



Black example



Refactoring into functions

● If all your code is written exclusively as executable scripts, it’s hard to reuse it 
and often hard to make changes or maintain it.

● Instead, it’s helpful to:
○ Break your code into logical units

■ The interior of loops if they start to get long
■ Any block of code that’s copy/pasted (or very similar) in multiple parts of a script
■ Complicated boolean expressions

○ Write those units as more general functions
○ Write a “main” function that calls your functions in order

■ if __name__ == “__main__”: pattern is useful
● Linters can pick up complex parts of code and recommend a refactor

○ More on this later.



Refactoring example

Adapted from Serge Koudoro. “Secret Session: 
Master coding in your research environment. Code 
Documentation.” ISMRM 2019.



Refactoring example

● Factor out distance predicate
● Rename almost everything
● Make limit an optional 

argument



Refactoring example

● Use a list comprehension
● Unpack pixels directly as an 

argument

https://docs.python.org/3.8/tutorial/datastructures.html#list-comprehensions
https://docs.python.org/3.8/tutorial/controlflow.html#unpacking-argument-lists


Commenting

● Comments are generally a good thing, but don’t go overboard
● Exception: docstrings for modules, functions, and classes

○ IDEs, Autogenerated documentation (Sphinx autodoc), __doc__
● Otherwise comments are exclusively for when you’ve done something 

non-obvious
● Ask yourself if you can make the code clearer before writing a comment

○ Change some names
○ Refactor
○ Add type hints (more on this later)

● If you have to do something weird, write a concise comment explaining it and 
include any context.



Correctness Does your code do what you want it 
to do?



General points on correctness

● The most important part of any code you right is that it works!
● Most basic way to test this is to run it (with some real input data) and 

manually inspect the results.
● This can be hard to do with bigger projects.
● There are tools that try to identify problems before you run some code
● There are also tools that automatically test parts of your code
● Both can be useful



Linters

● Linter: Tool that analyzes code and makes suggestions automatically
● Pylint is the big one for Python
● For the purposes of code correctness, pay close attention to E- (error) and W- 

(warning) level messages.
● This can help catch everything from simple typos to subtle Python errors 

before you try to use your code.
● Pylint is available in every major IDE I’m aware of (VSCode, Spyder, …) or 

just from the command line.

https://pylint.pycqa.org/en/latest/


Pylint example



Pylint example



Pylint example



Testing

● It’s always a good idea to verify that your code works on a small example.
● In general, try to isolate the parts of your code that surround use of an 

external package
○ Don’t just write tests verifying that popular packages like numpy work.

● Admittedly this gets a lot harder the more complex your project is, but even 
putting together one or two end-to-end test cases where you know the 
expected result is worthwhile.

● Helpful tools: unittest, pytest
● Note: This is a deep topic, we’re barely scratching the surface here

https://docs.python.org/3/library/unittest.html
https://docs.pytest.org/en/7.2.x/contents.html


Testing example

From the pytest docs…



Type checkers

● Automated tools that go a little further to identify errors
● Specifically, ensures that the types of your data are compatible

○ Types: string, int, float, list, …
● Getting the most out of these tools requires type annotations
● e.g. my_number: float = 6
● Again, will catch a lot of simple mistakes, but can also catch more subtle 

errors.
● Examples: pyright, mypy

https://github.com/microsoft/pyright
https://mypy.readthedocs.io/en/stable/index.html


pyright example



pyright example



pyright example



pyright example



Usability How easy will it be for others (or 
your future self) to use your code?



Usability

● A lot of time is spent writing code handling a problem that someone else has 
already addressed

● You can avoid this by sharing your code and making it easy for others to use
● Readability is a big part of this, but at a base level others need to be able to 

install the dependencies and adapt your script to their data
● We’ll talk about some tools that will make that process smoother.



Command line interface

● For tools/scripts, it’s often helpful to provide a command line interface
● Makes it easier to adapt to new data, new environment
● Also makes it easier to bash script with your tool.
● Libraries for this:

○ argparse
○ click

https://docs.python.org/3/library/argparse.html
https://click.palletsprojects.com/en/8.1.x/


CLI example



Dependency Specification

- To use your package, someone needs to know which dependencies they 
need (numpy, nibabel, scipy are common ones).

- Several ways to do this:
- requirements.txt: simplest, supported by pip, loosely defined dependencies can cause issues
- One-liner to generate a requirements.txt: pip freeze > requirements.txt
- You can then trim it down to the necessities

- Installing from a requirements.txt: pip install -r requirements.txt
- Even better: Set up a distribution package



Dependencies example – requirements.txt

pip freeze output

After editing to the essentials



Packaging

● If you’re distributing a Python package to multiple people, it can be useful to 
generate a distribution package for it.

● A distribution package can be pushed to PyPI, making it available via pip’s 
default repository (i.e. pip install mypackage)

● Recommended tools:
○ poetry: Newer, checks dependencies to ensure they’re internally consistent
○ setuptools: Classic standard, relatively easy to set up.

https://python-poetry.org/
https://setuptools.pypa.io/en/latest/index.html


Packaging example – setuptools
pyproject.toml setup.cfg



Packaging example – poetry
pyproject.toml (not shown: poetry.lock)



Wrap-up

● I covered a lot of ground here, so if you’re not using any of these 
tools/techniques already it would be hard to adopt them all at once

● I do encourage you to pick something that sounded useful and give it a shot, 
and try incorporating these concepts one-by-one.

● Note: While I was talking about Python, analogous tools and concepts exist 
for most other mainstream programming languages.



Any questions?


