Python code design and
documentation

Increasing the usability of your code
Tristan Kuehn

Intro

e Once you know enough Python to get what you need done, it can be tricky to
know how to improve your code
e Ideally, your code will be readable, correct, and usable.
When possible, it's a good practice to share any analysis code alongside a
paper
o You get the most value out of this practice when others can understand and use the code!
There are lots of concrete tools and techniques you can use here

To a less experienced user, it can be hard to find and apply them
This will be a survey of these tools and techniques at a high level
| won'’t get into installation, but most IDEs will have some support built in.

Read a bl I |ty Can you understand what this code

is doing?

General points on readability

e |t takes a lot longer and is harder to work with code that’s difficult to

understand

e As you’re writing your code you know it better than anyone

o Don’tjust assume it's easy to understand because of this!
o Putyourself in a naive user’s shoes, or ask a colleague to take a look at it.

e If you come back to some code you’ve written after a couple of months or
longer, you are a naive user again!

e This is an art more than a science, but there are some tools and heuristics
you can use for help

Names

e Descriptive names go a long way toward making your code readable

e Some tension between clarity and length
o nis usually not a good name, but neither is
number_of_voxels_in_my_region_of_interest

e Python guidelines for case: PEP 8
e Functions/methods should be verbs in imperative voice
o print, notprinter or prints
e This can be hard!
o “There are only two hard things in Computer Science: cache invalidation and naming things.”

Code formatters

e It's a huge pain to manually keep up consistent formatting in a project.

e How to split long lines in different situations? Single quotes or double quotes?
How many blank lines? Where to put parentheses?

e A code formatter handles all these concerns automatically.

e Popular examples: black, autopep8

e \Well-integrated in IDEs, can be configured to run automatically or on demand

https://black.readthedocs.io/en/stable/index.html
https://github.com/hhatto/autopep8

Black example

if very_long_variable_name is not None and \
very long variable_name.field > 0 or \
very_long_variable_name.is_debug:
z = 'hello '"+'world'
else:
world = LC
a = 'hello {}'.format(world)
f = rf'hello {world
if (this
and that): y = 'hello ''world fi: https://github.com/psf/black/issues/26
class Foo (object):
def f (self)
return 37%-2
def g(self, x,y=42):
return y
def £ (a: List[int])
return 37-a[42-u : y**3]
def very_important_function(template: str,*variables,file: os.PathLike,debug:bool=False,):

with éﬁen(filé, 7¢)7as g

very_long_variable_name is not None
and very_long_variable_name.field >
or very_long_variable_name.1is_debug

Black example

+

1" .format(world)

if this and that:
y = "hell world # |@eld: https://github.com/psf/black/issues/26

class Foo(object):
def f(self):
return 37

def g(self, x, y=42
return y

f(a: List[int]):
return 37 - a[42 - u : y**3]

very_important_function(
template: str,
*variables,

file: os.PathLike,
debug: bool = False,

with opeﬁ(filé, Y)'as f:r

Refactoring into functions

e If all your code is written exclusively as executable scripts, it's hard to reuse it
and often hard to make changes or maintain it.

e Instead, it’s helpful to:

o Break your code into logical units
m The interior of loops if they start to get long
m Any block of code that’s copy/pasted (or very similar) in multiple parts of a script
m Complicated boolean expressions

o Write those units as more general functions

o Write a “main” function that calls your functions in order
m if __name__ == “__main__": patternis useful

e Linters can pick up complex parts of code and recommend a refactor
o More on this later.

Refactoring example

def pix_collection(items):

e [] y Adapted from Serge Koudoro. “Secret Session:

for i in items: Master coding in your research environment. Code
if (1[0] ** 2 + 1[1] ** 2) < limit**2: Documentation.” ISMRM 2019.

res.append(i)
return res

Refactoring example

def pix_collection(items):
res = []
limit = 1¢
for 1 in items:
if (i[6] ** 2 + 1[1] ** 2) < limit**2:
res.append(i)
return res

is_in_origin_circle(x_coord, y coord, limit):

return (x_coord**2 + y coord**2) < limit**2

e Factor out distance predicate
def filter_neighbourhood_pixels(pixels, limit=10): e Rename almost everything
QeighPOU{h90d_9ixils = [] e Make 1limit an optional
or xel in pixels:
2; is_in_g;igin_circle(pixel[.}, pixel[1], limit): argument
neighbourhood pixels.append(pixel)
return neighbourhood pixels

Refactoring example

pix_collection(items):
res = []
limit = 16
for 1 in items:
if (i[e] ** 2 + i[1] ** 2) < limit**2:
res.append(i)
return res

is_in_origin_circle(x_coord, y coord, limit):

return (x_coord**2 + y coord**2) < limit**2

filter_neighbourhood_pixels(pixels, limit=10): e Use a list comprehension

neighbourhood_pixels = [] e Unpack pixels directly as an
for pixel in pixels:
if is_in_origin_circle(pixel[0], pixel[1], limit): argument
neighbourhood pixels.append(pixel)
return neighbourhood pixels

is_in_origin_circle(x_coord, y coord, limit):
return (x_coord**2 + y coord**2) < limit**2

filter_neighbourhood_pixels(pixels, limit=10):
return [pixel for pixel in pixels if is_in_origin_circle(*pixel, limit)]

https://docs.python.org/3.8/tutorial/datastructures.html#list-comprehensions
https://docs.python.org/3.8/tutorial/controlflow.html#unpacking-argument-lists

Commenting

e Comments are generally a good thing, but don’t go overboard

e Exception: docstrings for modules, functions, and classes
o IDEs, Autogenerated documentation (Sphinx autodoc), __doc

e Otherwise comments are exclusively for when you’'ve done something
non-obvious

e Ask yourself if you can make the code clearer before writing a comment

o Change some names
o Refactor
o Add type hints (more on this later)

e |f you have to do something weird, write a concise comment explaining it and
include any context.

CO rre Ctn eSS Does your code do what you want it

to do?

General points on correctness

e The most important part of any code you right is that it works!

Most basic way to test this is to run it (with some real input data) and
manually inspect the results.

This can be hard to do with bigger projects.

There are tools that try to identify problems before you run some code
There are also tools that automatically test parts of your code

Both can be useful

Linters

e Linter: Tool that analyzes code and makes suggestions automatically

e Pylint is the big one for Python

e Forthe purposes of code correctness, pay close attention to E- (error) and W-
(warning) level messages.

e This can help catch everything from simple typos to subtle Python errors
before you try to use your code.

e Pylintis available in every major IDE I'm aware of (VSCode, Spyder, ...) or
just from the command line.

https://pylint.pycqa.org/en/latest/

Pylint example

def print_strings(strings=[]):

strings.append(
print(f"Printinc S
for str_ in strings:
print(str_)
return
print(f"Printe

if _ _name__ ==

print_stringg()
print_strings([
print_strings()

Printing 1 strings
always_printed
Printing 2 strings
hi

always_printed
Printing 2 strings
always _printed
always printed

Pylint example

def prtnt strlngs(strlngs []):

strings. append(
print(f"Printing {le
for str_ in strings:
print(str_)

return

I print(f"Printe

if _ _name_ ==
print_ strlngs()
print_strings([
print_strings()

linttest.py:1:0: CO114: Missing module docstring (missing-module-docstring)

Printing 1 strings
always_printed
Printing 2 strings
hi

always_printed
Printing 2 strings
always _printed
always printed

linttest.py:1:0: WO102: Dangerous default value [] as argument (dangerous-defau

lt-value)

linttest.py:8:4: WO101: Unreachable code (unreachable)

Pylint example

def print_strings(strings=[]):

if

DEFAULT_STRING =

strings.append(

print(f"Printing {le

for str_ in strings:
print(str_)

return

print(f"Pri

__name__ == ‘
print_ strlngs()
print_strings([
print_strings()

def prlnt strlngs(strlngs None)

to pr1nt (strlngs + [DEFAULT STRING]) if strlngs else [DEFAULT STRING]

print(f"F

for str_ in to prlnt
prlnt(str)

print(f"Printed

return

)

Printing 1 strings
always printed
Printing 2 strings
hi

always_printed
Printing 2 strings
always_printed
always_printed

Printing 1 strings
always_printed
Printed 1 strings.
Printing 2 strings
hi

always_printed
Printed 2 strings.
Printing 1 strings
always_printed
Printed 1 strings.

Testing

e It's always a good idea to verify that your code works on a small example.
e |n general, try to isolate the parts of your code that surround use of an

external package
o Don’tjust write tests verifying that popular packages like numpy work.

e Admittedly this gets a lot harder the more complex your project is, but even
putting together one or two end-to-end test cases where you know the
expected result is worthwhile.

e Helpful tools: unittest, pytest

e Note: This is a deep topic, we’re barely scratching the surface here

https://docs.python.org/3/library/unittest.html
https://docs.pytest.org/en/7.2.x/contents.html

Testing example

From the pytest docs...

Create a new file called test sample.py, containing a function, and a test:

content of test sample.py
def func(x):
return x + 1

def test answer():
assert func(3) ==

The test

$ pytest

test session starts

platform linux -- Python 3.x.y, pytest-7.x.y, pluggy-1l.x.y
rootdir: /home/sweet/project

collected 1 item

test sample.py F

FAILURES

[100%]

test_answer

def test answer():

> assert func(3) ==
E assert 4 ==
E + where 4 = func(3)

test_sample.py:6: AssertionError

short test summary info

FAILED test sample.py::test_answer - assert 4 ==
1 failed in 0.12s

Type checkers

e Automated tools that go a little further to identify errors

e Specifically, ensures that the types of your data are compatible
o Types: string, int, float, list, ...

e Getting the most out of these tools requires type annotations

e e.g.my_numbe r= 6
e Again, will catch a lotof simple mistakes, but can also catch more subtle

errors.
e Examples: pyright, mypy

https://github.com/microsoft/pyright
https://mypy.readthedocs.io/en/stable/index.html

pyright example

def add_to_one(number_2):
return 1 + number_2

if __name__ == ' ' -
prlnt(add to one(lnput(Please ente

pyright example

def add_to_one(number_2):
return 1 + number_2

if __name__ == ' ' -
prlnt(add to one(lnput(

Please enter a number to be added to 1: 2
Traceback (most recent call last):
File "typetest.py", line 6, in <module>
print(add_to_one(input("Please enter a number to be added to 1: ")))
File "typetest.py"”, line 2, in add_to_one
return 1 + number_2
TypeError: unsupported operand type(s) for +: 'int' and 'str'

pyright example

def add_to_one(number_2: float):
return 1 + number_2

if _name == air -
prtnt(add to one(tnput(

pyright 1.1.292
Jcifs/khan/users/tkuehn/code/typetest/typetest.py
Jcifs/khan/users/tkuehn/code/typetest/typetest.py:6:22 - : Argument of type "str" c
annot be assigned to parameter "number_ 2" of type "float" in function "add_to_one"
"str" is incompatible with "float"
1 error, ® warnings, 0 informations

pyright example

def add_to_one(number_2: float):
return 1 + number_2

if __name__ == .
prtnt(add to_ one(float(lnput(

Please enter a number to be added to 1: 2
3.0

U Sa b | I |ty How easy will it be for others (or

your future self) to use your code?

Usabillity

e Alot of time is spent writing code handling a problem that someone else has
already addressed

e You can avoid this by sharing your code and making it easy for others to use

e Readability is a big part of this, but at a base level others need to be able to
install the dependencies and adapt your script to their data

e \We'll talk about some tools that will make that process smoother.

Command line interface

For tools/scripts, it's often helpful to provide a command line interface
Makes it easier to adapt to new data, new environment
Also makes it easier to bash script with your tool.

Libraries for this:
O argparse
o click

https://docs.python.org/3/library/argparse.html
https://click.palletsprojects.com/en/8.1.x/

import argparse

CLI example inport nibabel as nib

import numpy as np
from skimage.filters import threshold _otsu

def threshold lmage(lmage np ndarray) -> np ndarray:

return 1mage > threshold otsu(lmage)

gen_ parser() -> argparse ArgumentParser

parser = argparse ArgumentParser()
parser.add_argument("image path")
parser.add_argument(“out _path")
return parser

main():

parser = gen_parser()

args = parser.parse_args()

image = nib.load(args.image_path)

image_foreground = threshold_image(image.get fdata())

nib.save(
nib.nifti1.Nifti1Image(image_foreground.astype(np.short), image.affine),
args.out_path,

Dependency Specification

- To use your package, someone needs to know which dependencies they
need (numpy, nibabel, scipy are common ones).

- Several ways to do this:

- requirements.txt: simplest, supported by pip, loosely defined dependencies can cause issues
- One-liner to generate a requirements.txt: pip freeze > requirements.txt
- You can then trim it down to the necessities

- Installing from a requirements.txt: pip install -r requirements.txt
- Even better: Set up a distribution package

Dependencies example — requirements.txt

pip freeze output

imageio==2.25.0

networkx==3.0 After editing to the essentials
nibabel==5.0.0

numpy==1.24.2

nibabel~=5.0l
packaging==23.0

scikit-image~=0.19.3

Pillow==9.4.0

pkg resources==0.0.0
PyWavelets==1.4.1
scikit-image==0.19.
scipy==1.10.0
tifffile==2023.2.3

Packaging

e If you're distributing a Python package to multiple people, it can be useful to
generate a distribution package for it.

e Adistribution package can be pushed to PyPI, making it available via pip’s
default repository (i.e. pip install mypackage)

e Recommended tools:
o poetry: Newer, checks dependencies to ensure they’re internally consistent
o setuptools: Classic standard, relatively easy to set up.

https://python-poetry.org/
https://setuptools.pypa.io/en/latest/index.html

Packaging example — setuptools

pyproject.toml setup.cfg

[build-system] [metadata]
name = myscript

requires = ["setuptools"] :
"setuptools.build_meta" version = 0.0.1

build-backend =
[options]
install-requires =
nibabel ~=5.0
scikit-image ~=0.19.3

Packaging example — poetry

pyproject.toml (not shown: poetry.lock)

[tool.poetry]

name = "myscript”
version = "0.1.0"
description ta

You can specify a package in the following forns: authors = ["Tristan Kuehn <tristankuehn@gmail.com>"
single name (requests): this will search for matches on PyPI TN "
name and a constraint (requests@*2.23.0) readme - README'md
git url (git+https://github.com/python-poetry/poetry.git)

git url with a revision (git+https://github.com/python-poetry/poetry.git#develop) S
file path (../my-package/my-package.whl) [tool.poetry. dependenCIeS]

directory (../my-package/) python = "A3.8"

url (https://example.com/packages/my-package-0.1.0.tar.gz)

nibabel = "~5.0.0"
nibabel s+ o -
Found packages matching scikit image = 0.19.3

Showing the first 10 matches

: [tool.poetry.group.dev.dependencies]
nibabel black = "~23.1.0"

nitransforms = wA o
indexed-gzip-fileobj-fork-epicfaace pyllnt = Zasl Ok
Lodexed-gztp pyright = "~1.1.292"

cvu

simplebrainviewer flake8 = "76.0.0"
pydeface isort = ""5.12.0"

morphonet
bidsify
scanphyslog2bids [build-system]
requires = ["poetry-core"]

version A5.0.0 for build-backend = "poetry.core.masonr

A e e e e e L e e e e W

(<]

(=]
7
piA
2
(=}

Wrap-up

e | covered a lot of ground here, so if you're not using any of these
tools/techniques already it would be hard to adopt them all at once

e | do encourage you to pick something that sounded useful and give it a shot,
and try incorporating these concepts one-by-one.

e Note: While | was talking about Python, analogous tools and concepts exist

for most other mainstream programming languages.

Any questions?

