
The brain learns by modifying the synaptic 
connections between neurons1–5. Although 
synaptic physiology helps explain the 
rules and processes behind individual 
modifications, it does not explain how 
individual modifications coordinate to 
achieve a network’s goal. Since learning 
cannot be just a blind accumulation of 
myopic, synapse-specific events that do 
not consider downstream behavioural 
consequences, we need to uncover the 
principles orchestrating plasticity across 
whole networks if we are to understand 
learning in the brain.

Within machine learning, researchers 
study ways of coordinating synaptic updates 
to improve performance in artificial neural 
networks, without being constrained by 
biological reality. They start by defining 
the architecture of the neural network, 
which comprises the number of neurons 
and how they are connected. For example, 
investigators often use deep networks 
with many layers of neurons, since these 
architectures have proved to be very effective 
for many tasks. Next, researchers define 
an error function6 that quantifies how poorly 
the network is currently achieving its goals 
and then they search for learning algorithms 

predominantly unsupervised fashion1,25–27, 
building representations that make explicit 
the structure that is only implicit in the raw 
sensory input. It is natural to wonder, then, 
whether backprop has anything to tell us 
about learning in the brain25,28–30.

Here we argue that in spite of these 
apparent differences, the brain has the capacity 
to implement the core principles underlying 
backprop. The main idea is that the brain 
could compute effective synaptic updates by 
using feedback connections to induce neuron 
activities whose locally computed differences 
encode backpropagation-like error signals. 
We link together a seemingly disparate set 
of learning algorithms into this framework, 
which we call ‘neural gradient representation 
by activity differences’ (NGRAD)9,27,31–41. 
The NGRAD framework demonstrates that 
it is possible to embrace the core principles 
of backpropagation while sidestepping 
many of its problematic implementation 
requirements. These considerations may be 
relevant to any brain circuit that incorporates 
both feedforward and feedback connectivity. 
We nevertheless focus on the cortex, which 
is defined by its multilaminar structure 
and hierarchical organization, and so has 
long been viewed as exhibiting many of 
the architectural features associated with 
deep networks.

Credit assignment in networks
This article emphasizes the role of learning 
in the generation of adaptive behaviour. 
It should be acknowledged that brains 
undoubtedly have prior knowledge that has 
been optimized by evolution (that is, in the 
form of neural architectures and default 
connectivity strengths). Priors may ensure 
that only a limited amount of learning based 
on a relatively small amount of task error or 
feedback information is needed throughout 
an animal’s lifetime to acquire all the 
skills the animal will exhibit. Nonetheless, 
although animals often display impressive 
behaviours from birth, they are also capable 
of extraordinary feats that could not have 
been tuned by evolution but instead require 
long bouts of learning. Some examples of 
such feats in humans are playing Go and 
chess; programming a computer or designing 
a video game; writing and playing a piano 
concerto; learning the vocabularies and 
grammars of multiple languages; recognizing 

that compute synaptic changes that reduce 
the error (Fig. 1).

In machine learning, backpropagation of  
error (‘backprop’)7–10 is the algorithm most 
often used to train deep neural networks 
(Box 1) and is the most successful learning 
procedure for these networks. Networks 
trained with backprop are at the heart 
of recent successes of machine learning, 
including state-of-the-art speech11 and 
image recognition12,13, as well as language 
translation14. Backprop also underpins recent 
progress in unsupervised learning problems 
such as image and speech generation15,16, 
language modelling17 and other next-step 
prediction tasks18. In addition, combining 
backprop with reinforcement learning has 
given rise to significant advances in solving 
control problems, such as mastering Atari 
games19 and beating top human professionals 
in the games of Go20,21 and poker22.

Backprop uses error signals that are 
sent through feedback connections to 
adjust synapses and has classically been 
described in the supervised learning setting 
(that is, with explicit, externally provided 
targets). However, the brain appears to 
use its feedback connections for different 
purposes23,24 and is thought to learn in a 
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thousands of objects; and diagnosing a 
medical problem and performing vascular 
microsurgery. Recent work in machine 
learning suggests that these behaviours 
depend on powerful and general learning 
algorithms12,20. Our interest here, then, is in 
characterizing such learning algorithms, and 
specifically, how they assign credit across 
multiple layers of neurons in the brain.

Correlative methods. Synaptic weights 
determine neural activity, neural activity 
determines the network’s output, and the 
network’s output determines the network’s 
error. In artificial networks, we can therefore 
reduce the error slightly by making small 
changes in the synaptic weights. However,  
it is non-trivial to decide whether to increase 
or decrease any particular weight, because 
a synapse’s strength does not influence the 
network’s output directly; rather, it influences 
its immediate postsynaptic neurons, which 
then influence their postsynaptic neurons, 
and so on, all the way to the output of 
the network. The radius of the synapse’s 

influence — its projective field — rapidly 
expands, so the effect of changing the 
synapse strength depends on the strengths 
of many subsequent synapses in the network 
(for example, the blue connections spreading 
from the input layer in Fig. 1).

A conceptually simple way to decide 
whether to strengthen or weaken a synapse  
is to measure the effect of changing a 
synapse strength on the error. Such 
a measurement is easy to make in artificial 
networks. First, some input is injected into 
the network, and the network’s baseline 
error is recorded. Next, noise is added to 
a particular synapse, and the same input 
is injected back into the network. Finally, 
one accepts the modified synaptic weight 
if the network’s new error is less than 
the baseline error, and one rejects the 
modification if the new error is larger than 
the baseline error42–44. This procedure can 
be implemented simply by a learning rule 
that broadcasts a global scalar representing 
the overall change in performance of the 
network (Fig. 1a). Suppose the performance 

of a network is captured by an error 
function that computes the degree to 
which the network’s outputs [y1,…,yM] 
deviate from their target values [t1,…,tM] 
— for example, via the squared error, 
E y t= ∑ ( − )l l l

1
2

2. To improve the error, we 
simply update a weight in the network Wij 
via η ′W E E ξΔ = − ( − )ij ij, where η is a learning 
rate, E is the error computed before noise 
is added, and E′ is the error computed after 
Gaussian noise N~ξ σ(0, )ij  is added to Wij. 
Although this method works and is easy to 
understand, it is extremely inefficient to 
measure the error of the whole network in 
order to know how to change a single synapse.

If changes at some synapses have 
more of an effect on performance than 
changes at other synapses do, we can 
do a bit better by measuring the effects 
of making N different synaptic changes 
simultaneously (in parallel), but this does 
not really solve the efficiency issue, because 
we then require about N trials before we 
can reliably infer whether increasing any 
particular synapse strength will increase 

Output

Input

Feedforward
network

Hebbian
learning

Perturbation 
learning

Backpropagation Backprop-like learning
with feedback network

a

b

c

No feedback Scalar feedback Vector feedback Synapse undergoing learning
Feedback signal (e.g. gradient)
Feedback neuron (required for learning)
Feedforward neuron (required for learning)
Diffuse scalar reinforcement signal

Precision of synaptic change in reducing error

Scalar feedback Vector feedback

Weight perturbation

Node perturbation

Backpropagation

Backpropagation approximations

Error landscape

Pa
ra

m
et

er
 1

Parameter 2

Perturbation learning

Hebbian
learning

Backpropagation

Fig. 1 | A spectrum of learning algorithms. a | Left to right: a neural 
network computes an output through a series of simple computational 
units. To improve its outputs for a task , it adjusts the synapses between 
these units. Simple Hebbian learning — which dictates that a synaptic con-
nection should strengthen if a presynaptic neuron reliably contributes to a 
postsynaptic neuron’s firing — cannot make meaningful changes to the blue 
synapse, because it does not consider this synapse’s downstream effect on 
the network output. Perturbation methods measure the change in error 
caused by random perturbations to neural activities (node perturbation) or 
synapse strengths44 (weight perturbation) and use this measured change as 
a global scalar reinforcement signal that controls whether a proposed  
perturbation is accepted or rejected. The backprop algorithm instead  
computes the synapse update required in order to most quickly reduce the 
error. In backprop, vector error signals are delivered backward along  
the original path of influence for a neuron. In the brain, vector feedback 
might be delivered in a variety of ways, including via a separate network.  

b | Backpropagation and perturbation algorithms fall along a spectrum with 
respect to the specificity of the synaptic change they prescribe. c | Algorithms 
on this spectrum learn at different speeds. Without feedback , synaptic 
parameters wander randomly on the error surface. Scalar feedback does not 
require detailed feedback circuits, but it learns slowly. Since the same signal 
is used to inform learning at all synapses, the difficulty of deciding whether 
to strengthen or weaken a synapse scales with the number of synapses in the 
network: if millions of synapses are changed simultaneously , the effect of one 
synapse change is swamped by the noise created by all the other changes, 
and it takes millions of trials to average away this noise43–46. The inverse scal-
ing of learning speed with network size makes global reinforcement methods 
extremely slow , even for moderately sized neural networks. Precise vector 
feedback via backprop learns quickly. In real networks, it is not possible to 
make perfect use of the internal structure of the network to compute per- 
synapse changes, but the brain may have discovered ways to approximate 
the speed of backprop.
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or decrease the error44–46. These kinds 
of ‘weight perturbation’ methods can be 
further improved by perturbing the outputs 
of neurons instead of weights42,47. Such 
‘node perturbation’ methods compute local 
derivatives of a neuron’s activity with respect 
to its own weights to speed up learning, but 
these methods are still very slow, and the 
performance gap increases as the network 
size increases44. We think it is likely that 
the brain employs perturbation methods 
for some kinds of learning. However, it 
is striking that there has not yet been any 
successful application of these methods to 
training large, deep networks for difficult 
problems, such as classifying natural images 
of many different types of object.

The backprop algorithm addresses the 
efficiency issues present in perturbation 
methods by computing rather than 
measuring how a change in a synapse 
strength will affect the network’s error 
(Box 1). This computation is possible 
because we have access to the exact causal 
relationship between the synapse strengths 
and the network’s output. By contrast, the 
causal relationship between the genotype 
and the phenotype generally depends on 
unknown aspects of the environment, 
so measuring the effects of genetic changes 
may be the only reasonable algorithm 
for evolution.

Backpropagation. Backprop computes how 
slightly changing each synapse strength 
would change the network’s error, using the 
chain rule of calculus. Moreover, it does this 
computation for all the synapse strengths at 
the same time and it requires only the same 
amount of computation as is needed for a 
forward propagation to pass through the 
network. Its key insight is to implement 
the chain rule of calculus using a recursive 
computation of ‘error signals’ (see Box 1 
for backprop’s algorithmic details). In a 
hierarchical, multilayer neural network, the 
error signals for the neurons in one layer are 
computed from the error signals in the layer 
above. Thus, error computations start in 
the final layer and flow backwards, leading 
to the notion of errors ‘backpropagating’ 
through the network. Once error signals have 
been computed for every neuron, the final 
output error can be reduced by changing the 
incoming weights of each neuron so as to 
push its postsynaptic activity in the direction 
specified by the error signal.

Backprop is often presented as requiring 
explicit output targets that are paired with 
corresponding input patterns. In fact, 
backprop’s recursive application of the chain 
rule provides a more general mechanism 

for computing how changes in the activity 
of one part of a network affect the activities 
downstream. This mechanism is thus 
broadly applicable to credit assignment in 
multilayer networks. For simplicity, we 
follow the supervised learning paradigm, 
but note that a backpropagated signal 
does not need to be a difference between 
an output and a supervised target. The 
signal can also be a temporal difference 
error or a policy gradient in reinforcement 
learning19,46,48–50, or a reconstruction or 
prediction error for an unsupervised 
algorithm (Supplementary Information). 
All of these can be self-constructed by 
an organism without reference to an 
external target.

An important empirical feature of 
backprop — and perhaps a key reason for 
its success — is its ability to quickly find 
good internal representations of inputs51 
when training deep neural networks. 
Internal representations are not specified 
explicitly by the input or the output targets. 

Instead, they must be discovered over the 
course of learning. Internal representations 
comprise useful building blocks — such 
as representations for edges, fragments of 
shapes, the semantic features of words and 
so forth — that the network’s intermediate 
layers use to efficiently code many different 
entities by using combinations of shared 
features. The distributed representation of 
input data as an activity vector of reusable, 
mix-and-match features allows networks to 
represent novel data as new combinations 
of familiar features. This allows the network 
to generalize to new data from the same 
distribution as the training data and in some 
cases to data that are outside this distribution.

The backprop algorithm has two main 
features that are critical for its operation. 
These features are remarkably consistent 
with biological networks. The first feature is 
the prescription of synapse-specific changes. 
Synaptic plasticity mechanisms are widely 
accepted as exhibiting synapse specificity in 
biological networks undergoing learning5,52, 

Box 1 | The backpropagation algorithm

the total incoming activity to neuron j (including its bias) is aj, and the neuron’s output is hj=f(aj)  
(see the figure). in this Box, we suppress the layer indices, which tell you both which neuron is 
referred to and, implicitly, the layer that it belongs to. thus, Wij is the synaptic weight that connects 
neuron i to neuron j. an error function computes the degree to which the network’s ultimate 
outputs (yl) deviate from their target values (tl). a common choice is the squared error: 

= ∑ −E y t( )l l l
1
2

2. Backprop is a method for computing, for every weight, the gradient of the error  
at the current setting of all the weights. the simplest way to use this gradient is to change  
each weight in proportion to the negative of its gradient. For a non-output layer, the update  
for weight Wij is

∑η η δ δ δ= − ∂
∂

= − = =










′ ′ΔW
E
W

h e f a W f awhere ( ) ( )ij
ij

i j j j j
k

k jk j

the key insight behind the backprop algorithm is that the δ terms, sometimes called ‘error 
signals’, can be computed recursively via the chain rule (rather than measured by injecting noise 
and observing the outcomes). at the output layer, δl = yl − tl. in all other layers, δj is computed  
from all of the δk in the layer above, so the error signals flow backward through the network, 
starting with the error signals at the output units that are the derivatives of the error function  
(see the figure).
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Fig. 2 | comparison of backprop-trained networks with neural responses in visual ventral cortex. a | Cadieu et al.58 showed that backprop-trained 
models12,170 (blue) explain inferior temporal cortex (IT) multi-unit responses better than other models do (grey). b | Khaligh-Razavi and Kriegeskorte70 showed 
that models with better classification performance more closely resemble IT representations; each unlabelled dot corresponds to a model, whereas the 
coloured dots L1–L7 correspond to successively deeper network layers. Moreover, neurons in deeper layers within the backprop-trained network have 
representations that are more similar to those in IT cortex than are neurons in earlier layers of the network. Part a adapted from reF.58, CC-BY-4.0  
(https://creativecommons.org/licenses/by/4.0/). Part b adapted from reF.70, CC-BY-4.0 (https://creativecommons.org/licenses/by/4.0/).

such as in spike-timing-dependent 
plasticity2–4, where the specific presynaptic 
and postsynaptic spike trains influence the 
particular synaptic modifications between 
two neurons. The second feature is the 
requirement for feedback connections 
that deliver error information to neurons 
deep within the network, so that they can 
compute the necessary synaptic changes. 
We refer to a learning algorithm as 
‘backprop-like’ if it optimizes a downstream 
objective by using detailed vector feedback 
to help prescribe synapse-specific updates. 
Feedback connections between areas 
permeate every network of the cortex 
and, critically, can act to modulate the 
spiking of ‘feedforward’ neurons. These 
feedback connections can take the form 
of direct ‘top-down’ cortico-cortical 
connections from higher to lower cortical 
processing areas, like those that exist 
between V2 and V1 within the visual 
system23. Equally, feedback connections 
could be routed through the thalamus, via 
cortico-thalamo-cortical loops that can 
deliver higher-order information to cortical 
regions and individual neurons that receive 
lower-order information53–55.

It is not clear in detail what role feedback 
connections play in cortical computations, 
so we cannot say that the cortex employs 
backprop-like learning. However, if feedback 
connections modulate spiking, and spiking 
determines the adaptation of synapse 
strengths, the information carried by the 

feedback connections must clearly influence 
learning! Backpropagation can be viewed 
as a very good candidate for what form 
this influence should take if the cortex is to 
be an efficient learning machine. This still 
leaves open the details of exactly how the 
feedback connections could approximate 
backpropagation, and there are good 
arguments (discussed below)25,28–30,56,57 to 
suggest that some of the most obvious 
implementations are biologically unrealistic. 
But these arguments do not mean that 
backprop should be abandoned as a guide 
to understanding learning in the brain57–59; 
its core ideas — that neural networks 
can learn by computing synapse-specific 
changes using information delivered in an 
intricate web of feedback connections — 
have now proved to be so powerful in so 
many different applications that we need to 
investigate less obvious implementations.

It should be noted at the outset that the 
cortex differs from artificial neural networks 
in many significant ways. For example, there 
is no straightforward mapping between 
layers in an artificial network and the layers 
(that is, layers 1–6) or areas (for example,  
V1 and V2) in the cortex. Moreover, cell 
types, connectivity and gene expression 
differ between different areas of the 
cortex60–63, and cortical areas send and 
receive different kinds of connections to 
and from various cortical and subcortical 
areas, among many other differences. 
Nevertheless, there are also overarching 

similarities across cortical areas, such as 
the prevalence of microcolumns64,65 and 
canonical connectivity patterns both within 
and between cortical areas54,66, that suggest 
common computations67, and we think that 
understanding these common computations 
will be useful. Specifically, we imagine that 
an algorithm akin to backprop is required 
in order to coordinate synaptic changes.

Backprop in the brain?
There is no direct evidence that the 
brain uses a backprop-like algorithm for 
learning. Past work has shown, however, 
that backprop-trained models can account 
for observed neural responses, such as 
the response properties of neurons in the 
posterior parietal cortex68 and primary 
motor cortex69. A new wave of evidence 
from neuroscience modelling of the visual 
cortex is carrying this trend forward58,70–72. 
This work has revealed that multilayer 
models trained with backprop to classify 
objects tend to perform better than other 
models at matching the representations 
along the visual ventral stream in primates 
(Fig. 2). Models that are not trained with 
backprop (such as bio-inspired models 
using Gabor filters73,74, or networks that 
use non-backprop optimization59) do not 
perform as well as backprop-optimized 
networks, and their representations do 
not match those in the inferior temporal 
cortex as well as do the representations 
discovered by backprop-trained models. 
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The representational matches from 
networks trained with backprop are by 
no means perfect, and recent work has 
indicated that current models do not 
explain some aspects of human object 
classification75. Nevertheless, the tendency 
for backprop-trained models to better 
match observed neural responses appears 
to be widespread, with related work 
demonstrating that auditory neuron 
responses are also predicted better by 
multilayer networks trained by backprop 
than by other models76. This does not prove 
that the cortex learns via backprop-like 
mechanisms, but as Cadieu et al.58 state, 
it shows that the “possibility cannot be ruled 
out merely on representational grounds.”

Performance and representational 
matches can never on their own establish 
that backprop-like mechanisms are 
employed by the brain. The proliferation 
of computing power and the discovery of 
better priors might one day allow researchers 
to train high-performing networks for 
complex tasks using slower learning 
algorithms that do not make use of vector 
feedback. What we can say is that the 
practicality and efficiency of backprop are 
at least suggestive that the brain ought to 
harness detailed, error-driven feedback for 
learning. To our knowledge, no one in the 
machine-learning community has been able 
to train high-performing deep networks on 
difficult tasks such as classifying the objects 
in imageNet photos using any algorithm 
other than backprop. In particular, 
attempts to rely on algorithms that use 
only scalar feedback signals, such as genetic 
algorithms77 or REINFORCE46, have failed 
by a wide margin to reach backprop’s level  
of performance.

In addition to producing models 
that better match the representations 
observed in the brain, backprop-trained 
deep networks can also help explain the 
size and timing of receptive field changes 
in perceptual learning72,78, as well as the 
stage-like transitions observed during some 
types of learning in animals and humans78. 
Other work has demonstrated that neurons 
in layers 2 and 3 of cortex appear to compute 
detailed mismatches between actual and 
predicted sensory events79, and that the 
neural dynamics at successive stages of the 
visual cortex are consistent with hierarchical 
error signals80. These findings are consistent 
with the hypothesis that feedback 
connections in the cortex drive learning 
across multiple layers of representation. 
In the penultimate section, we review 
recently described neural mechanisms that 
offer additional support for this hypothesis.

Problems with backprop
Backprop’s computations. Although there 
is mounting evidence that multilayer 
networks trained with backprop can help 
explain neural data, there are difficult 
questions concerning how backprop-like 
learning could be implemented in the 
cortex. Equation 1 gives the synaptic 
updates prescribed by backprop, 
in matrix/vector notation:

η η ⊤δW E
W

hΔ = − ∂
∂

= − (1)l
l

l l−1

where

∘ ∘ .′ ′⊤δ a δWe f f a= ( ) = ( ) ( )l l l l l l+1 +1

Bold symbols are vectors, · ⊤ is the 
transpose operation, ∘ is element-wise 
multiplication and hl = f(al). Since this 
equation does not require indices for 
individual neurons (as in Box 1), we use 
subscripts to denote the layers. The equation 
says that the presynaptic weights, Wl, in 
layer l are updated according to the product 
of the error signals δl and the presynaptic 
activities, which are the outputs of the 
previous layer hl−1. The error signals δl 
are computed by multiplying the error 
signals from the layer above, δl+1, by the 
transpose of the postsynaptic weights 

⊤Wl+1 and then multiplying by the derivative 
of the activity function ′ af ( )l . It is perhaps 
worth noting that, when presented in the 
form, η ∘ ′ ⊤aW e f hΔ = − ( ( ))l l l l−1, the update 
can be seen as a local Hebbian-like rule — 
where the postsynaptic activity is replaced 
by ′f a( )l — that is modulated by a third 
factor81, el, which is computed via feedback 
connections. In the subsequent sections, 
we refer to Eq. 1 as we outline three major 
difficulties in implementing backprop in 
biological circuits.

Backprop demands synaptic symmetry in 
the forward and backward paths. A naive 
implementation of backprop requires the 
delivery of error signals through feedback 
connections that have exactly the same 
strength as the feedforward connections. 
In Eq. 1, the errors, δl+1, travel along 
feedback weights, ⊤W ,l+1  that are symmetric 
to their feedforward counterparts. On a 
computer, the backprop algorithm sends 
error information backward using a 
set of error derivative variables that are 
distinct from the activity variables used 
in the forward pass. Soon after backprop 
was introduced, it was suggested that, 
in the brain, error information could 
be delivered by a distinct ‘error delivery 
network’, with each neuron in this 

backward network carrying update 
information for a matched neuron in 
the ‘forward’ network82,83. Early work on 
how backprop might be implemented 
in the brain also explored the idea that 
error signals might travel in a retrograde 
direction along the feedforward axons84,85 
(with, somehow, strengths equivalent 
to those in the anterograde direction). 
But this idea has been abandoned, because 
retrograde communication is much too 
slow to support backprop86–88. The need 
to have the same weight on two different 
connections has been called the ‘weight 
transport’ problem25,28,82 and would still be 
a major hurdle when a second error delivery 
network is posited. Previous work has 
considered the use of symmetric learning 
rules to establish and maintain this weight 
symmetry28,34,39,82,89–91, but the cortex does 
not exhibit the requisite point-to-point 
reciprocal connectivity.

Fortunately, recent work has 
demonstrated that this symmetry is 
unnecessary57,92–99. Remarkably, networks 
with fixed random feedback weights learn 
to approximately align their feedforward 
synaptic weights to their feedback weights. 
In a display of neural pragmatism, fake 
error derivatives computed using the 
random feedback weights cause updates 
to the feedforward weights that make the 
true error derivatives closer to the fake 
derivatives. This surprising phenomenon, 
called ‘feedback alignment’, suggests that 
feedback connections do not need to be 
symmetric to their feedforward counterparts 
in order to deliver information that can be 
used for fast and effective weight updates57. 
Feedback alignment thus offered early 
evidence that the kind of precise symmetry 
employed by backprop is not always 
required for effective learning. Random 
feedback weights may be insufficient 
for learning in deeper networks100, but 
subsequent work has demonstrated that 
simple learning mechanisms could shape  
the backward pathway to ensure that 
effective feedback is delivered99,101, even  
in very deep networks trained on a 
complex task101.

Error signals are signed and potentially 
extreme-valued. In backprop, the 
information sent backwards through a 
network to inform updates is conveyed in 
the form of signed error signals, δ. During 
training these signals often vary across 
many orders of magnitude, referred to as 
the phenomena of exploding and vanishing 
gradients102. Although evidence exists 
for signed error delivery in apparently 
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single-layered structures such as the 
cerebellum103,104, feedback of signed errors 
in deep networks, such as the cortex, 
appears problematic. A separate set of ‘error 
neurons’82,83,101, as suggested in the previous 
section, could be used to implement a 
backward pass, with firing rates above 
a certain value communicating positive 
error, and rates below this value conveying 
negative error. However, the network must 
then perform complicated bookkeeping to 
coherently integrate the signed information 
coming from multiple feedback connections 
and to continue the propagation of this 
information across multiple layers. When 
thinking about how backprop could be 
implemented in the brain, this problem is 
still unsolved, but we explore a potential 
solution that avoids the propagation of error 
signals altogether.

Feedback in brains alters neural activity. 
In error backpropagation, feedback 
connections deliver error signals that do 
not influence the activity states of neurons 
produced by feedforward propagation. 
Rather, the information delivered via δ only 
influences synaptic updates. The role of 
feedback connections in the brain appears 
to be fundamentally different. In the cortex, 
for example, these connections influence the 
neural activities produced by feedforward 
propagation and are thought to serve a 
number of functional roles. For example, 
top-down control through feedback 
connections has a well-established link with 
gain control — that is, the enhancement 
or suppression of neural responses 
depending on, for example, attention to a 
particular feature in the visual field65,105–117. 
Interestingly, feedback connections in the 
cortex can also drive activity, rather than just 
modulate or enable it.

This idea has been corroborated by 
experiments showing that conduction 
velocities and the types of excitatory 
synaptic communication are often 
comparable between feedback and 
feedforward axons118,119, evidence that 
early visual areas are activated during 
visual mental imagery120,121, evidence that 
top-down feedback is actively involved 
in bottom-up processing122,123, and lesion 
experiments demonstrating a cessation 
of activity following the inactivation of 
feedback124,125. The consequences of this idea 
appear in a number of proposals, such as 
reverse hierarchy theory126 and hierarchical 
Bayesian inference for perception36,127–130, 
both of which draw inspiration from 
Helmholtz’s view of perception as 
unconscious inference131.

Although neuroscientists have proposed 
several functions for feedback connections, 
they have rarely considered the possibility 
that these connections’ primary function is 
to drive learning — for example, see reF.23. 
There is, however, a long but lesser known 
history of work in the machine-learning 
literature that has used feedback connections 
to alter the activities produced during 
feedforward propagation (unlike backprop) 
and then used these alterations to guide 
learning9,27,31–35,37–41. Here we suggest that 
the most important role for feedback 
connections is to make alterations in neural 
activities to convey the information required 
for effective multilayer learning; that is, the 
activity alterations induced by feedback 
dictate synaptic weight changes that improve 
feedforward processing in deep networks.

The NGRAD hypothesis
Using neural activity differences to 
encode errors. Many proposed learning 
mechanisms have used differences in 
activity states to drive synaptic changes, 
rather than propagating or diffusing 
signals that represent gradients explicitly. 
Around the time that backprop entered 
the mainstream8, several neural-network 
learning algorithms — including the 
Boltzmann machine35,132 — explored this 
idea by using temporal differences between 
activities inferred during two phases of 
propagation as a means to compute updates. 
Several recently introduced approaches have 
instead used activity differences between 
sets of neurons in a local circuit133 or 
between different compartments within  
a neuron134,135.

We call learning mechanisms that 
use differences in activity states to drive 
synaptic changes NGRADs. The idea that 
the cortex uses an NGRAD to perform an 
approximation to gradient descent will be 
called the NGRAD hypothesis. The main 
attraction of this hypothesis is that it avoids 
the need to propagate two quite different 
types of quantity: activities and error 
derivatives. Instead, NGRADs are based 
on the idea that higher-level activities — 
coming from a target, another modality, 
or a larger spatial or temporal context 
— can nudge27,34,134 lower-level activities 
towards values that are more consistent 
with the higher-level activity or a desired 
output. Moreover, the induced change in 
lower-level activities can then be used to 
compute backprop-like weight updates 
using only locally available signals. Thus, the 
fundamental idea is that top-down-driven 
activities drive learning without carrying 
explicit error information between layers.

One concrete example of such an 
algorithm is GeneRec34, which combines 
insights from the Boltzmann machine 
algorithm132 and the recirculation algorithm27. 
GeneRec trains multilayer recurrent 
networks as follows: in a ‘negative phase’, the 
input is provided, and recurrent activities are 
allowed to settle to equilibrium. In a ‘positive 
phase’, input is provided to the network 
while the output neurons are clamped to, 
or nudged towards, their target values, 
and activities are again allowed to settle 
to equilibrium. GeneRec’s learning rule is 
simple and local: each synaptic weight change 
should be proportional to the difference 
between the product of the presynaptic and 
postsynaptic activities from the positive 
and negative phases.

A number of other algorithms, including 
contrastive Hebbian learning37, the 
Almeida/Pineda algorithms31–33 and the 
wake–sleep algorithm in the Helmholtz 
machine36,130, use a similar logic as the 
backbone for learning. The most important 
contribution for our purposes is their use 
of locally available information — activity 
states at different points in time or across 
different spatial compartments — to capture 
the error information that guides learning. 
New work on the biological plausibility 
of backprop has returned to these 
ideas133,134,136,137: for example, the recently 
introduced equilibrium propagation137 
employs the same essential elements as 
GeneRec and contrastive Hebbian learning. 
Furthermore, several models133,134 have 
examined how NGRAD learning might be 
achieved without a separate negative phase. 
These models use ideas from predictive 
coding to make effective updates using 
locally computed differences across neurons 
or their compartments, rather than across 
time. In spite of the fact that NGRADs 
compute error vectors locally within a layer, 
rather than transmitting them across layers, 
as in backprop and feedback alignment57, 
many algorithms in this class can be shown 
to make updates that approximately follow 
(and in some cases, exactly follow) the 
gradient computed by backprop39,133,135,136.

To gain intuition into how activity 
differences computed within a layer can 
be used to guide learning, we examine 
a simpler proposal put forward at the 
first Neural Information Processing 
Systems workshop on deep learning138 
(Supplementary Fig. 1) and later developed 
by Lee et al.41. Fundamental to the proposal 
are the use of auto-encoders35,139 to send 
top-down signals to earlier layer activations 
and the use of the induced differences to 
make weight updates. In the following 
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sections, we describe auto-encoders and 
then show how they can be used as the basis 
of a deep-learning algorithm motivated by 
biological constraints.

Auto-encoders. We begin by developing  
the idea of an auto-encoder35,139, which  
is a network that aims to reconstruct its  
own input. The simplest auto-encoder  
takes a vector input x, uses this input  
vector to produce an activity vector in  
its hidden layer via a weight matrix W  
and nonlinearity, f W σ Wh x x= ( ; ) = ( ), and  
then uses the hidden activity vector to  
reconstruct an approximation to the input  
vector via a backward weight matrix:  

̂ g B σ Bx h h= ( ; ) = ( ). Auto-encoders can be 
trained without requiring explicit labels, 
because the difference between the original 
input and the reconstruction, ̂e x x= − , is 
used as the error to drive learning. This 
difference can be computed locally by 
neurons in the input layer and used to adjust 
the weights from the hidden layer to the 
input layer. The input-to-hidden weights 
might also be adjusted without requiring 
backprop by using the recirculation 

algorithm27,140. Another view of this idea 
is that the feedback connections in an 
auto-encoder learn an approximate inverse 
function ⋅g B( ; ) that transforms the hidden 
activity back to the associated point in the 
input space, so that g f W Bx x( ( ; ); ) ≈ . Many 
applications of auto-encoders use hidden 
layers that are much smaller than the input, 
but when learning a precise inverse, we 
may wish them to have roughly the same 
number of units. Most importantly for error 
assignment in the NGRAD framework, 
auto-encoders can be used to propagate 
detailed activity targets at higher layers 
backwards to provide targets for earlier 
layers, which can in turn be used to compute 
local differences that are appropriate for 
driving learning.

Target propagation. Figure 3a sketches target 
propagation141,142, the essential idea behind 
using a stack of auto-encoders for deep 
learning. We propagate activity forward 
through successive layers of a network 
to produce a predicted output. Then we 
propagate an output target backwards by 
means of inverse functions (that is, via 

feedback connections) that are learned 
through layer-wise auto-encoding of the 
forward layers. This backward-propagated 
target induces hidden-activity targets that 
should have been realized by the network. 
In other words, if the network had achieved 
these hidden activities during feedforward 
propagation, it would have produced the 
correct output. The direction in the activity 
space between the feedforward activity and 
the feedback activity indicates the direction 
in which the neurons’ activities should 
move in order to improve performance 
on the data. Learning proceeds by updating 
the forward weights to minimize these local 
layer-wise activity differences, and it can 
be shown that under certain conditions the 
updates computed using these layer-wise 
activity differences approximate those that 
would have been prescribed by backprop.

Formally, suppose that we have a stack of  
auto-encoders in which the hidden units 
of one auto-encoder are the input units for 
the next auto-encoder: we have forward 
functions, W σ Wh f h h= ( ; ) = ( )l l l l l−1 −1  for 
layers ∈ ...l L{1, , } and backward functions ∼ ∼ ∼

B σ Bh g h h= ( ; ) = ( )l l l l l+1 +1 +1 +1  for layers 
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Fig. 3 | Target propagation algorithms. a | Schematic of target propagation that uses perfect inverses, = −⋅ ⋅g f( ) ( )l l
1 , at each layer. For illustration, 

high-dimensional activity vectors at each layer are represented as points in a 2D space. Local layer-wise errors, = −∼e h hl l l, are computed between  
the forward-pass activities (hl; blue) and the top-level ( ∼h3; yellow) and induced (∼hl; green) targets. Synaptic weights, Wl, associated with the forward mapping 
fl(·) are updated in order to move the forward activity vectors closer to the targets. b | Difference target propagation helps correct for the fact that the 
feedback connections may not implement perfect inverses. For each layer, hl, we compute a reconstruction, ĥl, from the layer immediately above via gl+1(·). 
Then, to compensate for imperfections in the auto-encoders, we add the reconstruction error, = − ̂e h hl

B
l l, to the uncorrected target + +

∼g h( )l l1 1  (dark blue), 
computed from the layer above in the backward pass. c | Schematic for a single layer of difference target propagation. Forward synaptic weights, Wl, are 
updated in order to move the forward-pass hidden activity closer to the corrected hidden target. Note that the light purple, dark blue and green circles 
do not represent separate sets of neurons, but rather different stages of processing performed in the same neurons. Backward synaptic weights, Bl+1, are 
updated in order to reduce auto-encoder reconstruction errors. The hidden target, ∼hl, is computed as a mixture of the bottom-up activity with top-down 
feedback. Crucially , errors are computed with signals local to the neurons in each layer, rather than propagated between layers as in backprop.
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∈ ...l L{ − 1, , 1}. For notational convenience, 
we define the input to the network to 
be x = h0, the output of the network 
to be y = hL and the output target to be ∼
t h= L. Also for notational convenience, 
we absorb the weight matrices into the 
subscript and write Wf h f h( ) = ( ; )l l l l−1 −1  and ∼ ∼

Bg h g h( ) = ( ; )l l l l+1 +1 +1 +1 . Suppose further 
that the auto-encoders are perfect, so that 
we have exact inverse functions that map 
back from each higher layer to the layer 
below — that is, ⋅ ⋅g f( ) = ( )l l

−1 , so that 
g f h h( ( )) =l l l l−1 −1. After the forward 
and backward passes are complete, and 
assuming that one is computed after the 
next, the temporal difference between 
the feedforward activity and the feedback 
activity target, 

∼
e h h= −l l l, drives plasticity via 

η ⊤δW hΔ = −l l l−1, where ∘ ′δ e h=l l l, and ′hl is 
the derivative of the activation function in 
layer l. This idea of using auto-encoders to 
induce targets for deep updates is elegant, 
but it is problematic in practice41,100,142, 
perhaps most obviously because it may be 
impossible to obtain perfect inverses.

Difference target propagation. We 
described target propagation above as 
using perfect auto-encoders to convey 
targets to earlier layers. This constraint is 
unrealistic but can be fixed by training the 
backward weights. During the forward 
pass, we try to reconstruct neural activity 
from the activity in the subsequent layer: 
ĥ g h= ( )l l l+1 +1  (shown as the light purple dots 
in Fig. 3b). The backward path auto-encoders 
thus induce layer-wise errors, ̂e h h= ( − )l

B
l l , 

which we use to update the feedback weights 
via η ⊤δB hΔ = −l l

B
l+1 +1, where ⋅ ̂′δ e h=l

B
l
B

l, so 
that gl+1 is moved closer to an approximate 
inverse for fl+1. In this sense, the circuit 
learns to learn, a phenomenon common 
to many proposed approximations for 
backprop34,90,92,93,101. We then send the 
modified target 

∼
hl+1 at level l+1 backward 

through these approximate inverses and 
use the result to make a linear correction 
to the target at level l: ̂∼ ∼

h h h g h= − + ( )l l l l l+1 , 
shown by the green dots in Fig. 3b,c. Under 
certain assumptions41, this correction allows 
the auto-encoders to perform perfectly for 
this particular input. Finally, we use these 
corrected targets to update the forward 
weights as before: η ⊤δW hΔ = −l l l−1. This 
learning procedure is called difference 
target propagation (DTP)41 and is 
shown along with the layer-wise weight 
updates in Fig. 3b,c.

DTP effectively trains multilayer neural 
networks on some image classification 
tasks41, and it learns in a fraction of the 
time required by algorithms that use weight 

or node perturbation to update weights. 
The performance of algorithms like DTP 
is still being explored on more challenging 
datasets and more complex architectures. 
Recent work has shown that straightforward 
implementations of DTP do not perform 
as well as backprop on the ImageNet 
classification task with large, convolutional 
networks100. The DTP algorithm also does 
not address questions of online learning or 
how the forward and backward pathways 
could communicate in biological circuits. 
Nevertheless, the algorithm provides 
a compelling example of how locally 
generated activity differences can be used 
to drive learning updates for multilayer 
networks, and recent work has suggested 
avenues for recovering performance for 
large-scale tasks97,98,101.

We have emphasized algorithms that 
send the same kind of signal in both the 
forward and backward directions and that 
use activity differences local to a layer to 
compute errors. But it is possible that the 

brain employs approaches that are closer 
in spirit to backprop. One may conceive 
of algorithms wherein neurons switch 
between propagating ‘feature’ information 
forward and errors backward, although we 
are not aware of evidence for the kind of 
fast switching between modes that ought 
to be induced. Another idea would be to 
use a second set of specially designated 
neurons to carry errors backward across 
multiple layers and deliver them to the 
forward pathway without interfering with 
its feature processing83,99,101. Both of these 
approaches require that signed information 
be carried backwards across multiple layers 
via unsigned spiking activity. We are not 
aware of effective solutions to this issue, but 
these ideas present interesting alternatives 
to NGRADs that should not be ignored as 
we seek to understand how multilayer credit 
assignment might be implemented in neural 
circuits. No existing algorithm for multilayer 
credit assignment can be straightforwardly 
squared with what we know about the 

Glossary

Auto-encoders
Networks showing unsupervised learning in which  
the target is the input itself. one application of 
auto-encoding is the training of feedback connections  
to coherently carry ‘targets’ to earlier layers.

Backpropagation of error (backprop)
An algorithm for explicitly computing the changes  
to prescribe to synapses in deep networks in order to 
improve performance. it involves the flow of error signals 
through feedback connections from the output of the 
network towards the input.

Credit assignment
Determination of the degree to which a particular 
parameter, such as a synaptic weight, contributes to  
the magnitude of the error signal.

Deep learning
Learning in networks that consist of hierarchical stacks, 
or layers, of neurons. Deep learning is especially difficult 
because of the difficulty inherent in assigning credit to a 
vast number of synapses situated deep within the 
network.

Error function
An explicit quantitative measure for determining the 
quality of a network’s output. it is also frequently called 
a loss or objective function.

Error signals
Contribution to the error by the activities of neurons 
situated closer to the output. in backpropagation, these 
signals are sent backward through the network in order 
to inform learning.

ImageNet
A large dataset of images with their corresponding word 
labels. The task associated with the dataset is to guess 
the correct label for each image. imageNet has become 
a de facto standard for measuring the strength of 
deep-learning algorithms and architectures.

Internal representations
Hidden activity of a network that represents the 
network’s input data. ‘useful’ representations tend  
to be those that efficiently code for redundant features 
of the input data and lead to good generalization, such 
as the existence of oriented edges in handwritten digits.

Learning
The modification of network parameters, such as 
synaptic weights, to enable better performance 
according to some measure, such as an error function.

Reinforcement learning
Learning in an interactive trial-and-error loop, whereby 
an agent acts stochastically in an environment and uses 
the correlations between actions and the accumulated 
scalar rewards to improve performance.

Supervised learning
Learning in which the error function involves an  
explicit target. The target tends to contain information 
that is unavailable to the network, such as ground  
truth labels.

Target
The desired output of a network, given some input. 
Deviation from the target is quantified with an error 
function.

Unsupervised learning
Learning in which the error function does not involve a 
separate output target. instead, errors are computed 
using other information readily available to the network, 
such as the input itself or the next observation in a 
sequence.

Weights
Network parameters that determine the strength of 
neuron–neuron connections. A presynaptic neuron 
connected to a postsynaptic neuron with a high weight 
will greatly influence the activity of the postsynaptic 
neurons, and vice versa.
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neurophysiology of the cortex. But aspects 
of the algorithms explored here may help us 
form the next round of empirical inquiry.

Implementation
Existing NGRADs may offer high-level 
insights into how the brain could 
approximate backprop, but there are many 
questions about how such algorithms  
could be implemented in neural tissue. 
To function in neural circuits, NGRADs 
need to be able to do the following: 
coordinate interactions between feedforward 
and feedback pathways, compute differences 
between patterns of neural activities and 
use this difference to make appropriate 
synaptic updates. It is not yet clear in detail 
how biological circuits could support 
these operations, but recent empirical 
studies present an expanding set of 
potential solutions to these implementation 
requirements (Fig. 4).

On a computer it is trivial to compute and 
store memories of separate feedforward  
and feedback passes in order to take 
differences and then use these for learning. 
There have been several proposals for 
how the same might be achieved in neural 
tissue. One of the earliest, proposed for 
backprop, was to employ a second set 
of ‘error’ neurons that could act as the 
feedback variables82,83. The same idea could 
work for DTP, but there is no evidence for 
entirely segregated feedforward neurons in 
the cortex that are unaffected by feedback 
activity. Feedback tends to be area-wise 
reciprocal in the cortex, so that if area A 
sends forward connections to area B, it will 
tend to receive feedback from neurons in 
area B54,66. If, as it appears, feedforward and 
feedback paths in the brain ‘reuse’ the same 
neurons, this has important implications 
for how backprop-like learning might be 
achieved in the cortex. Naively, sharing 
the same neurons requires some form of 
strong time-multiplexing, in which the 
forward pass occurs and then is replaced by 
a backward pass. Again, there is no direct 
support for this kind of staggered activity — 
in the brain both feedforward and feedback 
pathways appear to be active and interacting, 
at least to some extent, simultaneously.

When thinking about biological 
implementations of backprop, it is common 
to assume that feedforward and feedback 
synapses have similar functional effects on 
a neuron34,37. If this assumption is correct, 
something like time-multiplexing would be 
required in order to compute the differences 
needed for learning. In reality, however, 
biological neurons are known to contain 
functionally and anatomically distinct 

compartments, and activity arriving at these 
different subcellular domains can have 
varying effects on the cell.

For example, apical tuft dendrites of 
layer 5 cortical pyramidal neurons are 
electrotonically isolated from somatic and 
basal compartments. The apical dendritic 
compartment can receive feedback 
connections from higher cortical areas143,144, 
or via higher-order thalamic nuclei145,146 
and can act as semi-independent reservoirs 
that only communicate with the somatic 
compartment under certain conditions147. 
In addition, ‘feedforward’ connections are 
thought to predominantly target the basal 
dendrites of pyramidal neurons, which act 
as functionally distinct regions that probably 
have different plasticity rules147–152.

Neurocomputational models have begun 
to employ more realistic neuron models, 
with segregated spatial compartments 

and unique computational properties 
per compartment91,153,154. These more 
complicated neurons avoid many of the 
problems that vex point-process neuron 
models. If information can be separated in 
space within a cell, then the two propagation 
phases — feedforward and feedback — do 
not require strict temporal segregation 
and hence might occur simultaneously. 
Interactions between compartments 
can occur in a variety of ways, including 
backpropagating action potentials and 
plateau potentials155. Furthermore, these 
bidirectional interactions between cellular 
compartments can be controlled by other 
factors, such as inhibitory interneuron 
activity that arrives at specific locations 
on pyramidal neurons156. Segregated 
dendrites may also underlie ‘burst ensemble 
multiplexing’ schemes for representing 
feedforward and feedback streams of 
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Fig. 4 | empirical findings suggest new ideas for how backprop-like learning might be approxi-
mated by the brain. a | When backprop was first published, a neuron (grey cell) was typically con-
ceived of, and modelled, as a single voltage compartment into which feedforward signals (blue; for 
example, from a lower-order cortical area) and feedback signals (red; for example, from a higher-order 
cortical area) would arrive undifferentiated. b | A contemporary schematic of a cortical pyramidal 
neuron (grey cell). Feedforward (1) and feedback (2) inputs are thought to be treated differently. They 
arrive at different compartments of the cell (for example, the basal and apical dendrites, respectively) 
and may be electrotonically segregated. Compartments can communicate selectively via backprop-
agating action potentials that are triggered by spikes in the soma and via calcium-spike-induced 
plateau potentials generated in the apical dendrite (3 and 4). Plasticity in one compartment may 
depend on both local synaptic events and events triggered in another compartment (5) . For example, 
‘forward’ basal synaptic plasticity may be altered by the arrival of apically generated plateau poten-
tials. Finally , local inhibitory neurons (yellow cells) can regulate the communication between the sub-
cellular compartments and can themselves be differentially recruited by higher-order inputs, and thus 
can modulate the interactions between the forward and backward pathways (6).
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information simultaneously in the cortex154; 
this work shows that high-frequency bursts 
and singlet spikes can be driven by different 
compartments and may convey different 
kinds of information in the forward and 
backward paths.

Empirical studies also suggest that plateau 
potentials generated from electrotonically 
segregated dendrites can alter the plasticity 
in feedforward connections157–159, sometimes 
with as few as five pairings of subthreshold 
presynaptic activity and at behavioural time 
scales160,161. These plasticity findings may 
help explain how dendritic segregation may 
be used to compute differences and inform 
synaptic updates. Urbanczik and Senn have 
described how errors might be computed 
across somatic and dendritic compartments 
to drive learning153. Guerguiev et al.162 
have built on this work to show how 
segregated dendrites could underlie a 
biologically motivated variant of DTP in a 
spiking network simulation. More recently, 
Sacramento et al.134 have proposed a variant 
of equilibrium propagation137 that makes 
use of both dendritic segregation and local 
interneuron circuitry in order to achieve 
NGRAD learning without assuming two 
phases. Nevertheless, how feedforward 
and feedback pathways in biological tissue 
coordinate their activities in order to achieve 
effective credit assignment remains an 
open question.

Another intriguing detail related to 
biological implementation lies in the fact 
that many NGRAD algorithms, but not 
backprop, compute their learning updates 
using feedback-driven improvements to 
lower-layer activity34,35,37,133,135,137. This aspect 
of these algorithms fits well with evidence 
from physiology that suggests that top-down 
feedback is actively involved in improving 
bottom-up information processing23,122,123. 
Taken together, these new findings and 
related theories are expanding the horizon of 
possible credit assignment mechanisms that 
might be considered biologically plausible.

Although empirical work has broadened 
our understanding of how backprop-like 
algorithms might operate, there remain 
difficult challenges in terms of how to 
test for such learning mechanisms in the 
brain. One simple conjecture that has 
been neglected in the literature, but that is 
predicted by backprop and NGRADs alike, 
is that feedback circuitry can influence 
the sign and amplitude of plasticity that is 
elicited at feedforward synapses. To test this, 
we could build on previous approaches146,163 
to examine the effects of synapse-specific 
plasticity protocols at feedforward 
connections to a cortical pyramidal neuron’s 

basal dendrites, while simultaneously 
controlling the activity patterns delivered 
via feedback connections to the neuron’s 
apical dendrite. This type of experiment 
would not constitute a proof of backprop or 
of a particular NGRAD algorithm, but since 
both require that detailed feedback activity 
be able to alter feedforward learning, this 
kind of experimental protocol would be a 
natural starting place for understanding 
multilayer learning.

Conclusions
The way in which the cortex modifies 
synapses so as to improve the performance 
of complicated multistage networks remains 
one of the biggest mysteries in neuroscience. 
The introduction of backpropagation 
generated excitement in the neuroscience 
community as a possible source of insight 
about learning in the cortex28. But the 
relevance of backpropagation to the cortex 
was quickly cast in doubt — partly because 
it failed to produce truly impressive 
performance in artificial systems and partly 
because, interpreted literally, it has obvious 
biological implausibilities25,28,29,57.

With the advent of greater computing 
power, bigger datasets and a few technical 
improvements, backprop can now train 
multilayer neural networks to be competitive 
with human abilities19,20,22. We think that 
backprop offers a conceptual framework 
for understanding how the cortex learns, 
but many mysteries remain with regard to 
how the brain could approximate it. Some 
of these mysteries are minor and easily 
addressed. For example, backprop networks 
are typically rate-based rather than spiking 
(Supplementary information) and violate 
Dale’s law164, which states that neurons in the 
brain form either excitatory or inhibitory 
connections165, whereas artificial neurons 
are usually able to form both166–169. Other 
mysteries, however, such as the computation 
and backward delivery of error signals, pose 
deeper conceptual issues. NGRADs resolve 
significant implausibilities of backprop in 
a way that is intuitive and consistent with 
how we think biological circuits operate. 
They do away with the explicit propagation 
of error derivatives and instead compute 
them locally through differences in 
propagated activities.

Many pieces are missing from any story 
that would firmly connect backprop with 
learning in the brain. Nevertheless, the 
situation now is very much reversed from 
that 30 years ago28, when it was thought that 
neuroscience might have little to learn from 
backprop, because aspects of the algorithm 
seem biologically unrealistic. The reality is 

that in deep neural networks, learning by 
following the gradient of a performance 
measure works really well. It therefore 
seems likely that a slow evolution of the 
thousands of genes that control the brain 
would favour getting as close as possible to 
computing the gradients that are needed 
for efficient learning of the trillions of 
synapses it contains.
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