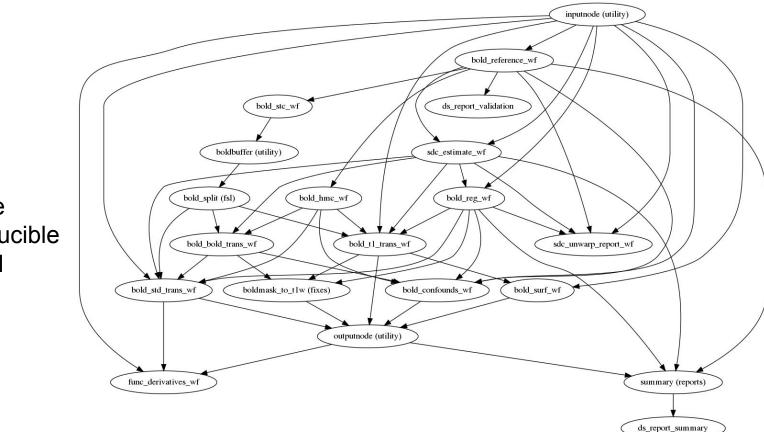

Automating your analysis code with workflows

Tristan Kuehn, Jason Kai, Ali Khan

Western University, London, Ontario

What is a workflow?

- Working with data always means using some kind of workflow
- Often the workflow isn't formalized
 - Just running some commands ad-hoc
- Workflow managers are tools for formalizing a workflow



Why workflow management?

- Modify or repeat processing / analysis
- Ease of changing parameters (e.g. file paths)
- Simplify managing complex workflows
- Automatically run workflows

V OPEN EDITORS	dbsc > resources > example_scripts > mrtpipelines > 🖂 0_run-mrtpipelines
[Preview] README.md	You, 12 months ago 1 author (You)
× 🖻 0_run-mrtpipelines dbsc/resources/exam	1 #!/bin/bash You, 12 months ago • Initialize subcortical repo
v scattr [github] □ □ □ □	2
✓ dbsc	3 # Variables
	4 subj=sub-\${1:4}
> 📫 config	5 out_dir=/scratch/tkai/Zona/data/hcp1200_37/hcp_test
resources	6 work_dir=\$out_dir/derivatives/prepdwi_v0.0.13/work
✓	7 njobs=32
> 📫 freesurfer	8 localscratch=\$SLURM_TMPDIR
🗸 📹 mrtpipelines	9 10 SINGULARITY MRTRIXDEV=\$HOME/opt/singularity/mrtrix3-dev.sif
0_run-mrtpipelines	10 SINGULARITI_minitzOEv=shomE/opt/Singularity/mi(125)dev.sii 11 SINGULARITY PREPOWIE-SHOME/Singularity/bids-app/khanlab prepdwi v0.0.13.sif
2_run-mrtpipelines-native	12 export SINGULARITYENV OWP NUM THREADS-shipbs
3_run-mrtpipelines-subcorticalconn	13 export SINGULARITYENV MKL NUM THREADS=\$njobs
4 run-mrtpipelines-maskedconn	
4b_subconn_maskedeval	15
□ 40_300comi_maskedevat	16 # Mrtrix pipelines - original resolution
	17 ## Temporarily move file for pybids
6_run-mrtpipelines-combineMask	18 mv \$out_dir/\$subj/dwi/\${subj}_dwi_space-T1w_preproc.grad_dev.nii.gz \$out_dir/\$subj/dwi/temp.nii.gz
extractCST	19
D getSubconn	20 ## Streamline count of 1 as we are not using template space data
🗋 getTDI	21 singularity exec ~/opt/singularity/mrtpipelines_0.1.6.sif genDhollanderTractography -w \$localscratch
> zona_bb_subcortex	
🕮 README.md	23 ## Clean up files
∨ 📹 freesurfer	<pre>24 mv \$out_dir/\$subj/dwi/temp.nii.gz \$out_dir/\$subj/dwi/\${subj}_dwi_space-T1w_preproc.grad_dev.nii.gz 25 rm \$localscratch/derivatives/mrtpipelines 0.1.6/mrtpipelines/\$subj/tractography/*space-Template*</pre>
Fs labels.csv	25 rm \$localscratch/derivatives/mrtpipelines_0.1.6/mrtpipelines/\$subj/tractography/*space-Template* 26 rsync -r \$localscratch \$out dir
✓ =	20 TSync T \$tocatscratch \$out_off

Example BOLD preprocessing workflow

Goals:

- Reliable
- Reproducible
- General

Things that are helpful (but not 100% required) to know

- How to install a Python package
 - Pip (<u>https://docs.python.org/3/installing/index.html</u>)
 - Conda (<u>https://docs.conda.io/en/latest/</u>)
- Some Python scripting
 - <u>https://docs.python.org/3/tutorial/index.html</u>
 - This isn't just for Python workflows but Snakemake runs on Python
- Some bash scripting
 - <u>https://learnxinyminutes.com/docs/bash/</u>
- Don't always need to do all this by scratch, don't feel intimidated by this list of things
 - Relatively easy to start with small chunks of what you're doing

CBS Server Locations to follow along

- We'll have live examples of the features we talk about in the slides
 - If you're interested in following along/seeing more context
 - Not mandatory, we'll have a live demo after
- For this tutorial:
 - Data: /scratch/tkai/data
 - Virtual Environment: /scratch/tkai/snakemakevenv
 - Workflows: /scratch/tkai/example-snakemake
 - Note: This stuff will be gone within 2 weeks (or a bit less)
- Will work faster if you copy data (and workflows) to localscratch:
 - cp -r /scratch/tkai/data/t1w-cannabis /localscratch
- In general, install snakemake with pip: pip install snakemake
- The Snakemake docs are a very good intro and reference: <u>https://snakemake.readthedocs.io</u>

Snakemake intro

Example problem

- We've got this OpenNeuro dataset of baseline and 3-year follow-up scans of cannabis users: <u>https://openneuro.org/datasets/ds000174/versions/1.0.1</u>
- Question: Is there a difference in mean brain volume across the two sessions?
 - No claims about the scientific validity of this question... Just a toy problem.
- Need to calculate the brain volume for each scan, group them, and summarize
- Kind of a pain to do by hand

Interactively running tools

\$ bet data/sub-314/ses-BL/anat/sub-314_ses-BL_T1w.nii.gz
out/bet/sub-314/ses-BL/anat/sub-314_ses-BL_desc-brain_T1w.nii.gz

- For small one-off tasks, this is okay
- Later, it might be hard to remember how you generated the output file
- You may also forget which input file was used
- As soon as you're running multiple scripts sequentially this can become untenable and hard to reproduce

Simple bash script

#!/bin/bash

```
for session in BL FU; do
    bet data/sub-314/ses-${session}/anat/sub-314_ses-${session}_T1w.nii.gz
out/bet/sub-314/ses-${session}/anat/sub-314_ses-${session}_desc-brain_T1w.nii.gz
done
```

- \$./myscript.sh
- Now the command, input file, and output file are all recorded somewhere.
- But: What if I want to run this code on another file?
 - Need to copy and paste the line and change the details maybe.
- What if I want to run this code on a dataset with 100 subjects/sessions?
- Then, what if I want to change a detail of the command?

Snakemake

- This kind of scenario is where a workflow manager becomes very helpful
- Key idea: define a workflow in terms of rules for producing files
- Then you can ask Snakemake to produce a file, and it will look through all the rules you've defined to figure out how to do it (and fail if it can't).

\$ snakemake out/bet/sub-314/ses-BL/anat/sub-314_ses-BL_desc-brain_T1w.nii.gz -c1

Adding wildcards

\$ snakemake out/bet/sub-314/ses-BL/anat/sub-314_ses-BL_desc-brain_T1w.nii.gz -c1

- Snakemake finds the needed wildcard(s) from the output you request
- The file we ask for matches output if subject and session are 101 and BL respectively those values propagate to the shell command Snakemake runs.

Generating params with a function

\$ snakemake out/bet/sub-314/ses-BL/anat/sub-314_ses-BL_desc-brainthreshold75_T1w.nii.gz -c1

Chaining rules

- If the rule that produces the file you ask for doesn't have the input it needs, Snakemake will check if any other rules can produce that input file.
- This is a really powerful feature to grasp if you want to put together a more complex workflow.

• If the inputs don't exist yet, Snakemake will figure out that it needs to run "bet" (once with each property) first.

Target rule

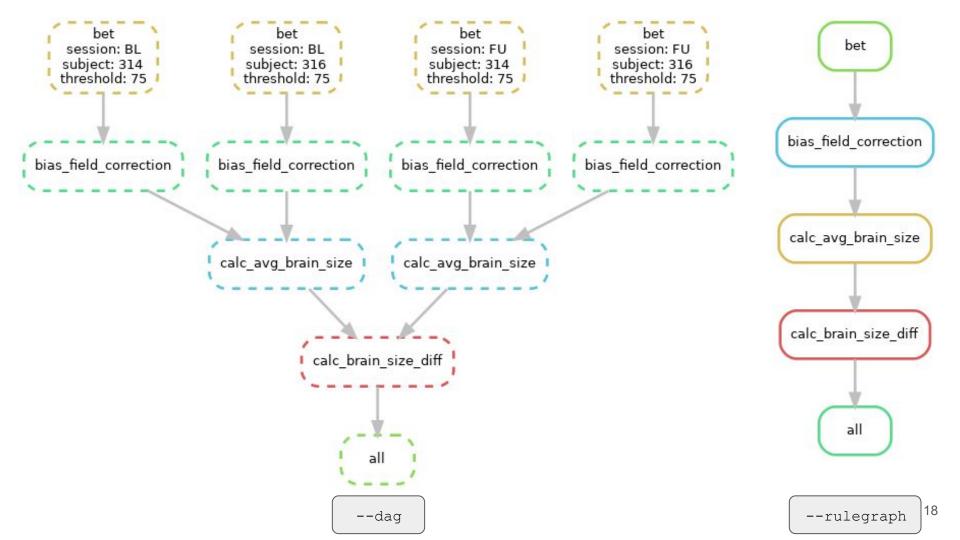
```
rule all:
    input:
        expand(
            rules.bias_field_correction.output,
            subject=[314, 316],
            session=["BL", "FU"],
            threshold=[5],
        )
        default_target: True
```

\$ snakemake -c1

- "Expand" will look for every combination of the given wildcards (by default)
- It will apply the combinations to the first argument
 - Here, output of the bias_field_correction rule

Config file

```
subjects:
    - 314
    - 316
sessions:
    - BL
    - FU
threshold: 50 configfile: "config/config.yaml"
rule all:
    input:
        rule all:
        expand(
            rules.bias_field_corection.output,
            subject=config["subjects"],
            session=config["sessions"],
            threshold=config["threshold"]
        ),
```


\$ snakemake -c1

• Config variables in "config/config.yaml" are accessible from the workflow.

Visualize the DAG

- You can look at a graph of your workflow using Snakemake
- This can help make sense of a large, confusing workflow

```
$ snakemake --rulegraph | dot -Tpdf > rule_dag.pdf
$ snakemake --dag | dot -Tpdf > dag.pdf
```

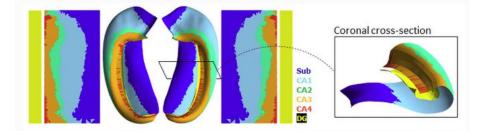

Nice Snakemake features

- Modularization (can share rules between workflows)
- Can define a docker (or singularity container) to run per rule.
 - Can also define a conda environment if that's your preference.
- Self-contained HTML reports
- Project template

Snakebids teaser

```
From snakebids import bids
rule bet:
      input:
            t1w=bids(
                          root="data",
                         subject="{subject}",
session="{session}",
datatype="anat",
suffix="T1w.nii.gz"
        output:
               brain=bids(
                          root="out/bet",
                          subject="{subject}",
session="{session}",
datatype="anat",
desc="brain",
                          suffix="T1w.nii.gz"
        shell:
               "bet {input} {output}"
```

Snakebids in the wild


A / Hippunfold

C Edit on GitHub

docs passing docker pulls 1.4k version v1.2.1

Hippunfold

This tool aims to automatically model the topological folding structure of the human hippocampus, and computationally unfold the hippocampus to segment subfields and generate hippocampal and dentate gyrus surfaces.

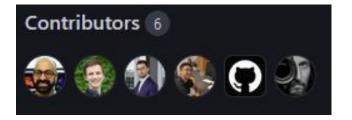
Structural Connectivity Applied To Targeted Regions (SCATTR)

docs passing version v0.1.2 python 3.8 | 3.9 | 3.10 O Lint and test workflow passing docker pulls 3 DOI 10.5281/zenodo.7636506

funcmasker-flex

funcmasker-flex

Brain masking app using Unet for fetal bold mri


🖀 » snakedwi

C Edit on GitHub

snakedwi

Thank you

- Help contribute to the development!
 <u>https://github.com/akhanf/snakebids</u>
- What features would you like to see? <u>https://github.com/akhanf/snakebids/issues</u>

Tristan Kuehn, Peter Van Dyken, Jason Kai, Ali Khan, github-actions bot, and you?

Demo/questions?

CBS Server Locations to follow along

- We'll have live examples of the features we talk about in the slides
 - If you're interested in following along/seeing more context
 - Not mandatory, we'll have a live demo after
- For this tutorial:
 - Data: /scratch/tkai/data
 - Virtual Environment: /scratch/tkai/snakemakevenv
 - Workflows: /scratch/tkai/example-snakemake
- In general, install snakemake with pip: pip install snakemake
- Will work faster if you copy data (and workflows) to localscratch:
 - cp -r /scratch/tkai/data/t1w-cannabis /localscratch
- In general, install snakemake with pip: pip install snakemake
- The Snakemake docs are a very good intro and reference: https://snakemake.readthedocs.io