
Automating your analysis
code with workflows

Tristan Kuehn, Jason Kai, Ali Khan

Western University, London, Ontario

What is a workflow?

● Working with data always means
using some kind of workflow

● Often the workflow isn’t
formalized

○ Just running some commands
ad-hoc

● Workflow managers are tools for
formalizing a workflow

2

Download some data from some
equipment

Run some standard
preprocessing

Use some custom code to
analyze the data

Generate some figures for a paper

Why workflow management?

3

● Modify or repeat
processing /
analysis

● Ease of changing
parameters (e.g.
file paths)

● Simplify managing
complex workflows

● Automatically run
workflows

Example BOLD preprocessing workflow

4

Goals:
● Reliable
● Reproducible
● General

Things that are helpful (but not 100% required) to know

● How to install a Python package
○ Pip (https://docs.python.org/3/installing/index.html)
○ Conda (https://docs.conda.io/en/latest/)

● Some Python scripting
○ https://docs.python.org/3/tutorial/index.html
○ This isn’t just for Python workflows but Snakemake runs on Python

● Some bash scripting
○ https://learnxinyminutes.com/docs/bash/

● Don’t always need to do all this by scratch, don’t feel intimidated by this list of
things

○ Relatively easy to start with small chunks of what you’re doing

5

https://docs.python.org/3/installing/index.html
https://docs.conda.io/en/latest/
https://docs.python.org/3/tutorial/index.html
https://learnxinyminutes.com/docs/bash/

CBS Server Locations to follow along

● We’ll have live examples of the features we talk about in the slides
○ If you’re interested in following along/seeing more context
○ Not mandatory, we’ll have a live demo after

● For this tutorial:
○ Data: /scratch/tkai/data
○ Virtual Environment: /scratch/tkai/snakemakevenv
○ Workflows: /scratch/tkai/example-snakemake
○ Note: This stuff will be gone within 2 weeks (or a bit less)

● Will work faster if you copy data (and workflows) to localscratch:
○ cp -r /scratch/tkai/data/t1w-cannabis /localscratch

● In general, install snakemake with pip: pip install snakemake
● The Snakemake docs are a very good intro and reference:

https://snakemake.readthedocs.io
6

https://snakemake.readthedocs.io

Snakemake intro

7

Example problem

● We’ve got this OpenNeuro dataset of baseline and 3-year follow-up scans of
cannabis users: https://openneuro.org/datasets/ds000174/versions/1.0.1

● Question: Is there a difference in mean brain volume across the two
sessions?

○ No claims about the scientific validity of this question… Just a toy problem.
● Need to calculate the brain volume for each scan, group them, and

summarize
● Kind of a pain to do by hand

8

https://openneuro.org/datasets/ds000174/versions/1.0.1

Interactively running tools

● For small one-off tasks, this is okay
● Later, it might be hard to remember how you generated the output file
● You may also forget which input file was used
● As soon as you’re running multiple scripts sequentially this can become

untenable and hard to reproduce

$ bet data/sub–314/ses-BL/anat/sub-314_ses-BL_T1w.nii.gz
out/bet/sub-314/ses-BL/anat/sub-314_ses-BL_desc-brain_T1w.nii.gz

9

Simple bash script

● Now the command, input file, and output file are all recorded somewhere.
● But: What if I want to run this code on another file?

○ Need to copy and paste the line and change the details maybe.
● What if I want to run this code on a dataset with 100 subjects/sessions?
● Then, what if I want to change a detail of the command?

$./myscript.sh

#!/bin/bash

for session in BL FU; do
 bet data/sub–314/ses-${session}/anat/sub-314_ses-${session}_T1w.nii.gz
out/bet/sub-314/ses-${session}/anat/sub-314_ses-${session}_desc-brain_T1w.nii.gz
done

10

Snakemake

● This kind of scenario is where a workflow manager becomes very helpful
● Key idea: define a workflow in terms of rules for producing files
● Then you can ask Snakemake to produce a file, and it will look through all the

rules you’ve defined to figure out how to do it (and fail if it can’t).

11

rule bet:
 input:
 t1w=“data/sub-314/ses-BL/anat/sub-314_ses-BL_T1w.nii.gz”
 output:
 brain=“out/bet/sub-314/ses-BL/anat/sub-314_ses-BL_desc-brain_T1w.nii.gz”
 shell:
 “bet {input.t1w} {output.brain}”

$ snakemake out/bet/sub-314/ses-BL/anat/sub-314_ses-BL_desc-brain_T1w.nii.gz -c1

Adding wildcards
rule bet:
 input:
 t1w=“data/sub-{subject}/ses-{session}/anat/sub-{subject}_ses-{session}_T1w.nii.gz”
 output:
 brain=(

“out/bet/sub-{subject}/ses-{session}/anat/sub-{subject}_ses-{session}_desc-brain_T1w
.nii.gz”

)
 shell:
 “bet {input.t1w} {output.brain}”

● Snakemake finds the needed wildcard(s) from the output you request
● The file we ask for matches output if subject and session are 101 and BL

respectively - those values propagate to the shell command Snakemake runs.

$ snakemake out/bet/sub-314/ses-BL/anat/sub-314_ses-BL_desc-brain_T1w.nii.gz -c1

12

Generating params with a function

rule bet:
 input:
 t1w=“data/sub-{subject}/ses-{session}/anat/sub-{subject}_ses-{session}_T1w.nii.gz”
 output:
 brain=(

“out/bet/sub-{subject}/ses-{session}/anat/sub-{subject}_ses-{session}_desc-brainthre
shold{threshold}_T1w.nii.gz”

)
 params:
 threshold=lambda wildcards: f”0.{wildcards.threshold}
 shell:
 “bet {input.t1w} {output.brain} -f {params.threshold}”

$ snakemake out/bet/sub-314/ses-BL/anat/sub-314_ses-BL_desc-brainthreshold75_T1w.nii.gz -c1

13

Chaining rules

● If the rule that produces the file you ask for doesn’t have the input it needs,
Snakemake will check if any other rules can produce that input file.

● This is a really powerful feature to grasp if you want to put together a more
complex workflow.

14

rule bias_field_correction:
input:

 brain=rules.bet.output.brain,
output:

 corrected=(
"out/biasfieldcorrection/sub-{subject}/ses-{session}/anat/sub-{subject}_ses-{session}_desc-correctedbr
ainthreshold{threshold}_T1w.nii.gz"
)

shell:
 "N4BiasFieldCorrection -d 3 -i {input.brain} -o {output.corrected}"

● If the inputs don’t exist yet, Snakemake will figure out that it needs to run “bet”
(once with each property) first.

Target rule
rule all:

input:
 expand(
 rules.bias_field_correction.output,
 subject=[314, 316],
 session=["BL", "FU"],
 threshold=[5],
)

default_target: True

$ snakemake -c1

● “Expand” will look for every combination of the given wildcards (by default)
● It will apply the combinations to the first argument

○ Here, output of the bias_field_correction rule

15

Config file
subjects:
 - 314
 - 316

sessions:
 - BL
 - FU

threshold: 50

$ snakemake -c1

● Config variables in “config/config.yaml” are accessible from the workflow.

configfile: "config/config.yaml"

rule all:
 input:
 expand(
 rules.bias_field_corection.output,

 subject=config[“subjects”],
 session=config[“sessions”],
 threshold=config[“threshold”]
),

16

Visualize the DAG

● You can look at a graph of your workflow using Snakemake
● This can help make sense of a large, confusing workflow

17

$ snakemake --rulegraph | dot -Tpdf > rule_dag.pdf
$ snakemake --dag | dot -Tpdf > dag.pdf

18--dag --rulegraph

Nice Snakemake features

● Modularization (can share rules between workflows)
● Can define a docker (or singularity container) to run per rule.

○ Can also define a conda environment if that’s your preference.
● Self-contained HTML reports
● Project template

19

Snakebids teaser

20

From snakebids import bids

rule bet:
 input:
 t1w=bids(
 root="data",
 subject="{subject}",
 session="{session}",
 datatype="anat",
 suffix="T1w.nii.gz"
)

output:
 brain=bids(
 root="out/bet",
 subject="{subject}",
 session="{session}",
 datatype="anat",
 desc="brain",
 suffix="T1w.nii.gz"
)

shell:
 "bet {input} {output}"

Snakebids in the wild

21

Thank you

● Help contribute to the development!
https://github.com/akhanf/snakebids

● What features would you like to see?
https://github.com/akhanf/snakebids/issues

Tristan Kuehn, Peter Van Dyken, Jason
Kai, Ali Khan, github-actions bot, and
you?

22

https://github.com/akhanf/snakebids
https://github.com/akhanf/snakebids/issues

Demo/questions?

23

CBS Server Locations to follow along

● We’ll have live examples of the features we talk about in the slides
○ If you’re interested in following along/seeing more context
○ Not mandatory, we’ll have a live demo after

● For this tutorial:
○ Data: /scratch/tkai/data
○ Virtual Environment: /scratch/tkai/snakemakevenv
○ Workflows: /scratch/tkai/example-snakemake

● In general, install snakemake with pip: pip install snakemake
● Will work faster if you copy data (and workflows) to localscratch:

○ cp -r /scratch/tkai/data/t1w-cannabis /localscratch

● In general, install snakemake with pip: pip install snakemake
● The Snakemake docs are a very good intro and reference:

https://snakemake.readthedocs.io 24

https://snakemake.readthedocs.io

