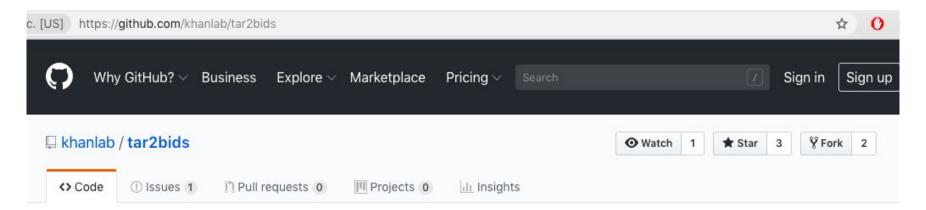
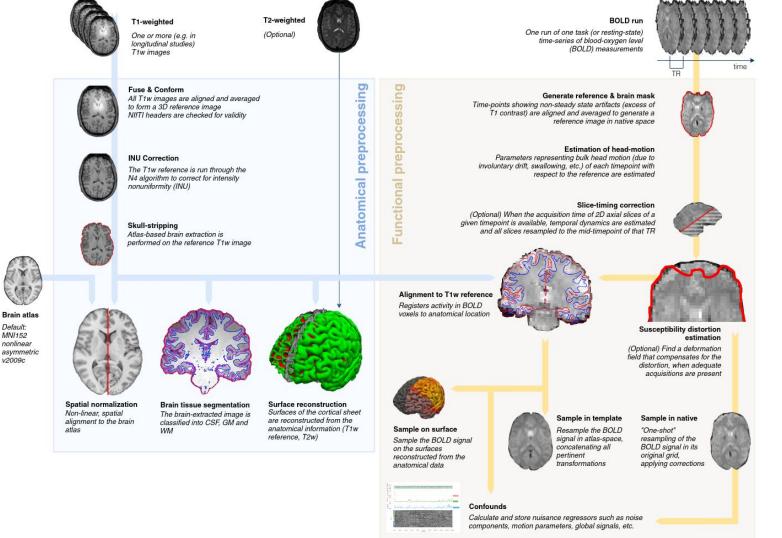
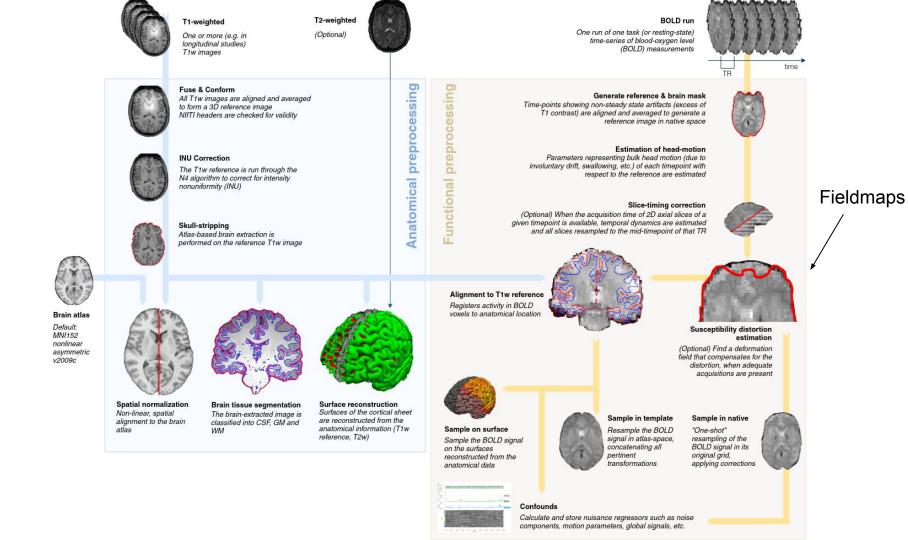
fMRIprep

Methods Lunch Jordan DeKraker & Olivia Stanley jdekrake@uwo.ca & ostanle2@uwo.ca

Why use fmriprep


- Get the best of Freesurfer, FSL, ANTs, and AFNI tools
- Automation
 - Doesn't just save time but also removes user error
 - Constantly being updated to reflect state-of-the-art methods
- Many useful outputs
 - Freesurfer's surface-based cortical analysis tools and subcortical labelmaps
 - Many choices of noise regressors for fMRI
 - Easily imported into Matlab, other MRI software, or BIDS-Apps like prepDWI, SPM, etc.
 - https://github.com/BIDS-Apps
- Reproducibility and sharing made easy!


Why not use it?

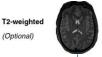

- 1. You have data with a narrow FOV
- You have non-standard data (infant or NHP)
- 3. EPI-norm (EPI template to EPI registration) is not yet supported
- 4. You want unlimited flexibility
- 5. You want to learn or to teach how to build processing pipelines
- 6. If you are trying to reproduce some *in-house* lab pipeline.

Prerequisite: BIDS

- fMRIprep is a BIDS app
- Luckily people at Western have conversion options
 - Suzanne Witt can help you set up a continual conversion (<u>switt@uwo.ca</u>)
 - Tar2bids allows you to convert your data given a heuristic
 - You could manually convert your data

Starting Decisions

- Although fMRIprep will search through your data and make analysis decisions for you there are some choices you have to make
 - THIS SHOULD BE DONE BEFORE YOU RUN IT
 - 1. Field map correction
 - a. Collected maps
 - b. Syn correction
 - 2. Regressors
 - a. Compcors, D-VARS, etc
 - b. ICA-AROMA
 - 3. Atlas Choice


Structural Outputs

- fmriprep/sub-01.html easy quality control!
- fmriprep/sub-01/anat/
 - _T1w_preproc.nii.gz
 - _brainmask.nii.gz
 - class-<CSF/WM/GM> probtissue.nii.gz
 - _label-aparaseg_roi.nii.gz
 - <pial/mid/WM>.<L/R>.surf.gii
 - transforms to and from MNI152
 - All of the above in (_space-MNI152)
- freesurfer/sub-01/
 - Other Freesurfer tools (e.g. logs, stats, surface-based labels, 2nd level analyses, group atlases etc.)

T1-weighted

One or more (e.g. in Ionaitudinal studies) T1w images

Fuse & Conform

All T1w images are aligned and averaged to form a 3D reference image NIfTI headers are checked for validity

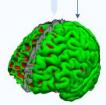
INU Correction

The T1w reference is run through the N4 algorithm to correct for intensity nonuniformity (INU)

Skull-stripping

Atlas-based brain extraction is performed on the reference T1w image

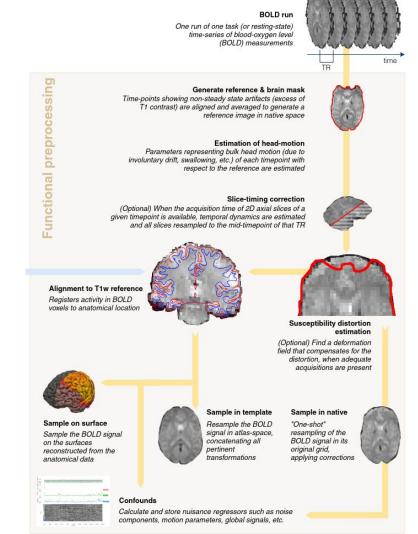
Brain atlas Default: MNI152 nonlinear asymmetric


v2009c

Spatial normalization Non-linear, spatial alignment to the brain atlas

Brain tissue segmentation

The brain-extracted image is classified into CSF, GM and



Surface reconstruction Surfaces of the cortical sheet are reconstructed from the anatomical information (T1w reference, T2w)

Structural Outputs Demo

Functional Outputs

- 1. Reports (sub-##.html)
- 2. Pre-processed BOLD Data
 - a. Native space
 - b. Volumetric Template Space
 - c. Surface Template Space
- 3. Confounds (confounds.tsv)
 - a. aCompcor/tCompcor
 - b. Framewise displacement
 - c. D-VARS
 - d. Motion parameters
 - e. ICA-AROMA regressors

Functional Outputs Demo

Installation demo

Via Docker

How to run it demo?

Via Docker

fMRIprep and Servers

- Can be run in a container on compute canada cluster
- Need an account for the trainee and the PI (also for faster results an allocation)
- Singularity is installed on graham (main cluster)
- Need to download singularity image of fmriprep (singularity pull or khanlab image)
- Submit run as a job to graham (bidsBatch)

- Can be run in container on a local server
- Requires >8 GB ram
- Lots of storage (~4GB/subject depending on runs)
- Requires singularity install
- Need to download singularity image of fmriprep (singularity pull or khanlab image)
- Run in singularity container on server

Boilerplate Methods Generation

Conclusions

- fMRIprep will use state of the art preprocessing on your data prior to GLM or resting state analysis
- fMRIprep can be run locally or on the cloud
- Reports provide easy quality assurance
- People at Western are available to help with setting up and using fMRIprep
- Reproducibility and sharing made easy!

Thank you for listening!

Any questions?

jdekrake@uwo.ca & ostanle2@uwo.ca