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Abstract

When we perform a cognitive task, multiple brain regions are engaged. Understanding

how these regions interact is a fundamental step to uncover the neural bases of behavior.

Most research on the interactions between brain regions has focused on the univariate

responses in the regions. However, fine grained patterns of response encode important

information, as shown by multivariate pattern analysis. In the present article, we introduce

and apply multivariate pattern dependence (MVPD): a technique to study the statistical

dependence between brain regions in humans in terms of the multivariate relations

between their patterns of responses. MVPD characterizes the responses in each brain

region as trajectories in region-specific multidimensional spaces, and models the multivar-

iate relationship between these trajectories. We applied MVPD to the posterior superior

temporal sulcus (pSTS) and to the fusiform face area (FFA), using a searchlight approach

to reveal interactions between these seed regions and the rest of the brain. Across two dif-

ferent experiments, MVPD identified significant statistical dependence not detected by

standard functional connectivity. Additionally, MVPD outperformed univariate connectivity

in its ability to explain independent variance in the responses of individual voxels. In the

end, MVPD uncovered different connectivity profiles associated with different representa-

tional subspaces of FFA: the first principal component of FFA shows differential connec-

tivity with occipital and parietal regions implicated in the processing of low-level properties

of faces, while the second and third components show differential connectivity with ante-

rior temporal regions implicated in the processing of invariant representations of face

identity.

Author summary

Human behavior is supported by systems of brain regions that exchange information to

complete a task. This exchange of information between brain regions leads to statistical

relationships between their responses over time. Most likely, these relationships do not

link only the mean responses in two brain regions, but also their finer spatial patterns.

Analyzing finer response patterns has been a key advance in the study of responses within

individual regions, and can be leveraged to study between-region interactions. To capture

the overall statistical relationship between two brain regions, we need to describe each
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region’s responses with respect to dimensions that best account for the variation in that

region over time. These dimensions can be different from region to region. We introduce

an approach in which each region’s responses are characterized in terms of region-specific

dimensions that best account for its responses, and the relationships between regions are

modeled with multivariate linear models. We demonstrate that this approach provides a

better account of the data as compared to standard functional connectivity in two differ-

ent experiments, and we use it to discover multiple dimensions within the fusiform face

area that have different connectivity profiles with the rest of the brain.

This is a PLOS Computational Biology Methods paper.

Introduction

Cognitive tasks recruit multiple brain regions [1–4]. How do these regions work together to

generate behavior? A variety of methods have been developed to study connectivity both in

terms of the anatomical structure of the brain [5], and of the relations between timecourses of

responses during rest [6] and during specific experimental tasks [7–11]. Functional Magnetic

Resonance Imaging (fMRI) has proven to be a valuable instrument in this enterprise, offering

noninvasive recording with good spatial resolution and whole-brain coverage.

In parallel to this literature, multivariate pattern analysis (MVPA; [12]) has drastically

increased the potential of fMRI for the investigation of representational content, making it

possible to detect information at a level of specificity that was unthinkable with previous uni-

variate analyses [13–17]. Despite the success of MVPA, relatively few attempts have been made

to transport the potential of multivariate analyses to the domain of dynamics and connectivity.

A recent study [18] used trial-by-trial classification accuracy of color and shape in area V4

and in the lateral occipital complex (LOC) to predict trial-by-trial accuracy of object classifica-

tion in the anterior temporal lobe (ATL). Earlier work by the same group [19] used a continu-

ous measure of classification based on correlations, offering a richer description of each brain

region’s patterns. These studies are important steps towards exploiting the wealth of informa-

tion encoded in patterns of BOLD response to study connectivity, but they both characterize

the information encoded in a brain region using a single measure (a given classification),

rather than in terms of values along multiple dimensions.

An additional property of both these methods [18, 19] is that they use classification along

experimenter defined categories. This approach can be useful to probe a specific hypothesis

about a given classification. However, it might disregard other information encoded by the

regions studied which is orthogonal to the categories chosen by the experimenter. As a conse-

quence, the results depend on the experimenter’s choice of the categories, and on how well the

chosen categories capture the functional role of the regions studied.

Multivariate pattern dependence (MVPD) is a novel method to investigate the ‘connectiv-

ity’ between brain regions in terms of multivariate spatial patterns of responses. In keeping

with the statistical literature [20], we will replace the term ‘connectivity’ with the term ‘statisti-

cal dependence’, which we consider more accurate. MVPD is composed of three main stages.

In the first stage, the representational space in each brain region is modeled extracting a set of

data-driven dimensions (rather than chosen by the experimenter), that correspond to spatial
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response patterns that ‘best’ characterize that region’s responses over time. In the second stage,

the multivariate timecourses of responses in each region are reparametrized as trajectories in

the representational spaces defined by these dimensions. In the third stage, the multivariate

relations between the trajectories in the representational spaces of different regions are mod-

elled. In a procedure analogous to MVPA, independent data are used to train and test the

models. The dimensions and the parameters modelling the relationship between two regions

are estimated with all runs but one, and then used to model the relation between those regions

in the remaining run.

We demonstrate the potential of MVPD in two different experiments, analyzing the statisti-

cal dependence between the posterior superior temporal sulcus (pSTS) during the recognition

of faces and voices, and of the fusiform face area (FFA) during the recognition of faces. In both

experiments, MVPD identified dependencies between regions not detected by standard func-

tional connectivity, and explained more variance in individual voxels responses than univari-

ate methods. In the end, MVPD revealed different connectivity profiles associated with

different dimensions of FFA’s responses.

Materials and methods

Ethics statement

The volunteers’ consent was obtained according to the Declaration of Helsinki (BMJ,

1991, pp. 302, 1194). The project was approved by the Human Subjects Committees at the Uni-

versity of Trento and Harvard University.

Experiment 1

Participants. Eleven volunteers (6 female; age range: 19-32, mean = 24) took part in the

experiment.

Stimuli. The faces and voices of three famous Italian politicians (Matteo Renzi, Pierluigi

Bersani, and Silvio Berlusconi) were used as stimuli. Two grayscale images of each face were

selected and cropped to an oval, and equated in luminance and contrast. Two audio clips were

selected for each of the three politicians: one in which they said “Italia” (“Italy”) and one in

which they said “governo” (“government”). The audio stimuli were further equated in

loudness.

Experimental design. Inside the scanner, participants completed two localizer runs (a

face localizer and a voice localizer) and five experimental runs. Before entering the scanner,

participants were instructed to consider a given individual (e.g., Matteo Renzi) as the target.

Participants were instructed to press a button with the index finger of the right hand when the

target was presented, and a button with the middle finger of the right hand when a distractor

was presented, irrespectively of stimulus modality. In the face localizer, participants were

shown 16 seconds blocks of faces and houses, and performed a 1-back task reporting whether

a stimulus was identical to the one that had been presented in the previous trial. In the voice

localizer, participants heard 16 seconds blocks of voices and tool sounds, and performed an

analogous 1-back task. In each experimental run, each ‘distractor’ face and each ‘distractor’

voice was presented 16 times, while the target face and target voice were presented for 8 trials.

Given that there are two ‘distractor’ identities and one ‘target’ identity, this implies that the tar-

get identity was presented on 20% of the trials. Stimuli were presented for 500ms and were fol-

lowed by a 3500ms fixation. The order of the trials was optimized to maximize efficiency using

Optseq 2 (http://surfer.nmr.mgh.harvard.edu/optseq/). Data from Experiment 1 has been pre-

viously used to investigate representations of person identity [21].
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PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005799 November 20, 2017 3 / 20

http://surfer.nmr.mgh.harvard.edu/optseq/
https://doi.org/10.1371/journal.pcbi.1005799


Experiment 2

Participants. A total of ten volunteers (N = 3 female, age range 18-50, mean 27.1) partici-

pated in the experiment. Data from one participant were discarded from the analysis because

of poor performance during a behavioral training session administered on the day before the

scanning.

Stimuli. Computer generated 3D models (using DAZ-3D) of 5 face identities were used

to generate images at 5 different orientations for each identity (S1 Fig). Stimuli were presented

with Psychtoolbox [22, 23] running on MATLAB, with the add-on ASF [24], using an Epson

EMP 9000 projector. Images were projected on a frosted screen at the top of the bore, viewed

through a mirror attached to the head coil.

Experimental design. One of the five face identities was designated as the ‘target’, and

participants were instructed to respond with the index finger of the right hand to the target

face and with the middle finger to the other ‘distractor’ faces. Each trial consisted of the pre-

sentation of a face image (500ms) followed by a fixation cross (1500ms). The experiment was

composed of three 12-minute runs, each consisting of approximately 320 trials. The order of

presentation of the stimuli was generated with optseq2 (http://surfer.nmr.mgh.harvard.edu/

optseq/). A 6 minutes block-design functional localizer was administered at the beginning of

the fMRI session. Participants observed 16 second long blocks comprising 8 images of faces, 8

images of houses, or 8 scrambled images, and performed a 1-back task in which they had to

detect repetitions of identical stimuli. None of the faces shown in the localizer were presented

during the other parts of the experiment. Data from Experiment 2 has been previously used to

investigate representations of face identity [15].

Data acquisition

The data were collected on a Bruker BioSpin MedSpec 4T at the Center for Mind/Brain Sci-

ences (CIMeC) of the University of Trento using a USA Instruments eight-channel phased-

array head coil. Before collecting functional data, a high-resolution (1 × 1 × 1 mm3) T1-

weighted MPRAGE sequence was performed (sagittal slice orientation, centric phase encod-

ing, image matrix = 256 × 224 [Read × Phase], field of view = 256 × 224 mm2 [Read×Phase],

176 partitions with 1 mm thickness, GRAPPA acquisition with acceleration factor = 2, dura-

tion = 5.36 minutes, repetition time = 2700, echo time = 4.18, TI = 1020 msec, 7˚ flip angle).

Functional data were collected using an echo-planar 2D imaging sequence with phase over-

sampling (image matrix = 70 × 64, repetition time = 2000 msec, echo time = 21 msec, flip

angle = 76˚, slice thickness = 2 mm, gap = 0.30 mm, with 3 × 3 mm in plane resolution). Over

three runs, 1095 volumes of 43 slices were acquired in the axial plane aligned along the long

axis of the temporal lobe.

Preprocessing and de-noising

Data were preprocessed with SPM12 (http://www.fil.ion.ucl.ac.uk/spm/software/spm8/) and

regions of interest were generated with MARSBAR [25] running on MATLAB 2010a. Subse-

quent analyses were performed with custom MATLAB software. The first 4 volumes of each

run were discarded and all images were corrected for head movement. Slice-acquisition delays

were corrected using the middle slice as reference. Images were normalized to the standard

SPM12 EPI template and resampled to a 2 mm isotropic voxel size. The BOLD signal was high

pass filtered at 128s and prewhitened using an autoregressive model AR(1). Outliers were iden-

tified with the artifact removal tool (ART), using both the global signal and composite motion.

Datapoints exceeding experimenter-defined thresholds were removed from the analysis. An

additional noise-removal step was performed with CompCorr [26]. In each individual
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participant, a control region was defined combining the white matter and cerebrospinal fluid

masks obtained with SPM segmentation, and five principal components were extracted. Since

the control region does not contain gray matter, its responses are thought to reflect noise. For

each run, the timecourses of the components extracted from the control region were regressed

out from the timecourses of every voxel in gray matter. For both experiments, the global signal

and six motion regressors generated by SPM during motion correction were also included as

regressors of no interest. For the FFA seed, data were analyzed both with and without these

additional regressors, and results are reported for both analyses.

ROI definition

For experiment 1, we defined a seed region of interest in the right pSTS using the independent

functional localizer. Data were modeled with a standard GLM using SPM12, and the seed ROI

was defined in each individual participant as a 6mm radius sphere centered in the pSTS peak

for the faces vs houses contrast (mean MNI coordinates: 54,-54,13).

For experiment 2, we defined a seed region of interest in the right FFA using the indepen-

dent functional localizer. Data were modeled with a standard GLM using SPM12, and the seed

ROI was defined in each individual participant as a 6mm radius sphere centered in the FFA

peak for the faces vs houses contrast (mean MNI coordinates: 40,-48,-20).

Searchlight

We defined a gray matter mask by smoothing (with a 6mm FWHM gaussian kernel) and aver-

aging the gray matter probabilistic maps obtained during segmentation. The average maps

were then thresholded obtaining approximately 130000 gray matter voxels (127821). For each

voxel in the gray matter mask, we defined a 6mm radius sphere centered in that voxel, and cal-

culated the statistical dependence between the responses in the seed region and the responses

in the sphere. Spheres contained 123 voxels. Spheres at the edge of the brain were restricted to

the voxels within the gray matter mask.

Standard functional connectivity

Functional connectivity was calculated low-pass filtering at 0.1Hz the mean response in the

seed region and the mean response in the searchlight spheres, and calculating Pearson’s corre-

lation between the low-pass filtered responses in the seed and each sphere, thus obtaining a

whole-brain functional connectivity map. Statistical significance across participants was

assessed with statistical nonparametric mapping [27] using the SnPM extension for SPM

(http://warwick.ac.uk/snpm).

MVPD: Modeling representational spaces

Let us consider the multivariate timecourses in the seed region: Y1, . . ., Ym and in a sphere:

X1, . . ., Xm, for experimental runs from 1 to m. Each multivariate timecourse Yi is a matrix of

size Ti × ny, where ny is the number of voxels in the seed region and Ti is the number of time-

points in run i. Analogously, each multivariate timecourse Xi is a matrix of size Ti × nx, where

nx is the number of voxels in the sphere. Data analysis followed a leave-one-run-out procedure:

for each choice of an experimental run i, data in the remaining runs were concatenated,
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obtaining

Ytrain ¼ ðY1; . . . ;Yi� 1;Yiþ1; . . . ;YmÞ;

Xtrain ¼ ðX1; . . . ;Xi� 1;Xiþ1; . . . ;XmÞ:

Principal component analysis (PCA) was applied to Ytrain, and Xtrain:

Ytrain ¼ UYSYVT
Y

Xtrain ¼ UXSXVT
X

Dimensionality reduction was implemented projecting Ytrain and Xtrain on lower dimen-

sional subspaces spanned by the first kY and kX principal components respectively:

~Y train ¼ YtrainV
½1;...;kY �
Y

~Xtrain ¼ XtrainV
½1;...;kX �
X

where V ½1;...;kT �
T is the matrix formed by the first kY columns of VY and V ½1;...;kX �

X is the matrix

formed by the first kX columns of VX. In the first analysis, the number of components kY and

kX was chosen for each sphere and iteration using the Bayesian Information Criterion (BIC).

In the second analysis, the incremental contribution of each component was tested by compar-

ing the results obtained choosing 1, 2 and 3 components. We can take a moment to reflect on

the interpretation of the procedure we just completed. For each region, each dimension

obtained with PCA is a linear combination of the voxels in the region, whose weights define a

multivariate pattern of response over voxels. Considering as an example the seed region, the

loadings of a dimension j are encoded in the j-th column of ~Y train, and represent the intensity

with which the multivariate pattern corresponding to dimension j is activated over time.

MVPD: Modeling statistical dependence

The mapping f from the dimensionality-reduced timecourses in the sphere ~Xtrain to the

dimensionality-reduced timecourses in the seed ~Y train was modeled with multiple linear regres-

sion 1:

~Y train ¼ Btrain
~Xtrain þ Etrain ð1Þ

the model parameters were estimated using ordinary least squares (OLS).

MVPD: Predicting multivariate timecourses

After having estimated parameters Btrain, predictions for the multivariate responses in the left

out run i were generated by 1) projecting the sphere data in run i on the sphere dimensions

estimated with the other runs, and 2) multiplying them by the parameters estimated using data

from the other runs. More formally, for each run i, we generated dimensionality reduced

responses in the sphere:

~Xtest ¼ XtestV
½1;...;kX �
X ;

where VX was calculated using the training data. Then, we calculated the predicted responses

Multivariate pattern dependence
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in the seed region in run i:

Ŷ test ¼ Btrain
~Xtest

using the parameters Btrain independently estimated with the training runs.

In keeping with the use of correlation in standard functional connectivity, we calculated the

correlation between the predicted and observed timecourses in each dimension in the seed

region. First, we projected the observed voxelwise timecourses in the seed region onto the

lower dimensional subspace using V ½1;...;kY �
Y :

~Y test ¼ YtestV
½1;...;kY �
Y ; ð2Þ

where VY was calculated using the training data. Then, we computed

rj ¼ corrðŶ j
test;

~Y j
testÞ

for each dimension j = 1, . . ., kY of the seed region’s subspace. In the end, we generated a single

summary measure �r , computing the average of the values rj weighted by the proportion of vari-

ance explained by the corresponding dimensions j:

wj ¼
SYðj; jÞ

XkY

‘¼1
SYð‘; ‘Þ

;

�r i ¼
XkY

j¼1

wjrj

(see the relationship between the eigenvalues along the diagonal of S and variance explain in

PCA). This procedure is motivated by the observation that if a dimension explains more over-

all variance in the total multivariate response, then explaining variability in that dimension

should be weighted more. See Fig 1 for an outline of the method. The values �r i obtained for the

different runs i = 1, . . ., m were averaged yielding �r . This procedure was repeated for each

searchlight sphere, obtaining a whole brain map of �r values for each participant. The signifi-

cance of �r was tested across participants with statistical nonparametric mapping [27] using the

SnPM extension for SPM (http://warwick.ac.uk/snpm).

Voxelwise variance explained

The value �r is a convenient measure of statistical dependence: it reflects how well the predic-

tion generated by MVPD correlates with the observed data. However, in this measure, the

target of the prediction is the multivariate timecourse ~Y test . Instead, ‘standard’ univariate con-

nectivity based on the mean timecourse aims to predict a different target: mean(Ytest, 2). This

is important because the proportion of variance explained (cross-validated R-squared) is given

by the amount of variance explained divided by the total variance of the target of the predic-

tion. Univariate connectivity and MVPD could explain the same amount of absolute variance,

but still have different proportions of variance explained, because the total variances of the tar-

gets of the prediction differ. One way to think about this is that mean-based univariate connec-

tivity ‘gives up’ on predicting variability orthogonal to the mean: if the mean response is

predicted perfectly, then the proportion of variance explained will be 100%. In contrast, if

MVPD tries to predict the mean as well as other dimensions, it could predict the mean per-

fectly like univariate connectivity, and still its proportion of variance explained could be less

than 100%, because of residuals in the other dimensions. To compare the cross-validated R-

Multivariate pattern dependence
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squared of univariate connectivity and of MVPD, therefore, we need a measure of their ability

to predict a common target. For this reason, for each searchlight sphere we calculated the

cross-validated R-squared of mean-based univariate connectivity and of MVPD in the time-

courses of individual voxels in the seed region. Predicting the timecourses of all voxels in the

seed region is a common target for both univariate connectivity and MVPD, and therefore it

makes the cross-validated R-squared of the two methods comparable. To calculate the cross-

validated R-squared for both methods, we needed to use a variant of functional connectivity

that can perform leave-one-out predictions. The variance explained in functional connectivity

is r2, and it is equal to the variance explained by a linear regression estimated and tested in the

same data. We used linear regression estimated in all runs minus one, and tested the variance

explained in the left-out run, thus obtaining a leave-one-out variant of mean-based univariate

functional connectivity (that uses the same data-split used in MVPD). The linear regression

yielded a prediction of the mean response in the seed region. Each voxel’s response was then

predicted with the predicted mean response in the seed region. For MVPD, we predicted each

voxel’s response projecting the multivariate prediction Ŷ test from its low-dimensional subspace

of principal components to voxel space, using the matrix V ½1;...;kY �
Y . Each voxel’s response was

reconstructed as the sum of the dimensions’ loadings on the voxels weigthed by the dimen-

sions’ loadings at each timepoint. It can be helpful here to note that this is equivalent to the

product

Y̆ test ¼ Ŷ testV
½1;...;kY �T
Y ;

where Y̆ test is the voxel-wise prediction (see 2 and consider that ðV ½1;...;kY �
Y Þ

T
¼ ðV ½1;...;kY �

Y Þ
� 1

). In

the case of the mean-based univariate functional connectivity, the voxelwise prediction can be

Fig 1. Analysis pipeline.

https://doi.org/10.1371/journal.pcbi.1005799.g001
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written as

Y̆ test ¼ Ŷ test1
T ;

where Ŷ test is the predicted mean response in the seed region and 1 is a nY × Ti vector of ones,

making explicit the common form of the prediction for MVPD and for mean-based univariate

connectivity: in the latter the mean is treated as a single dimension with equal loadings for

each voxel.

For each voxel j in the seed region, variance explained was calculated as

vðjÞ ¼ 1 �
SSðYtestð:; jÞ � Y̆ testð:; jÞÞ

SSðYtestð:; jÞÞ

where Y̆ are the predicted voxelwise timecourses, and the values v(j) were averaged to obtain

a single measure

�v ¼
PnY

j¼1
vðjÞ

nY

for each searchlight sphere.

Results

In Experiment 1, standard functional connectivity identified statistical dependence between

the right pSTS and more anterior regions of right STS (peak MNI: 54 -9 -15) and with the left

STS (peak MNI: -52 -27 -6) (Fig 2, S1 Table). MVPD, but not standard functional connectivity,

Fig 2. Brain regions showing statistical dependence with the right pSTS as identified by standard

functional connectivity (blue) and multivariate pattern dependence (MVPD, yellow) at a voxelwise

FWE-corrected threshold p < 0.05. MVPD additionally identified statistical dependence with the posterior

cingulate, and with larger portions of posterior STS bilaterally.

https://doi.org/10.1371/journal.pcbi.1005799.g002
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identified statistical dependence with the posterior cingulate (peak MNI: 0 -71 34), and with

larger portions of posterior STS bilaterally (Fig 2, S2 Table).

To evaluate the separate effects of predicting independent data with a leave-one-out

approach and of transitioning from univariate to multivariate statistical dependence, we addi-

tionally measured univariate statistical dependence with a leave-one-out procedure. As antici-

pated, predicting independent data reduced the number of significant voxels for univariate

dependence (or ‘connectivity’) as compared to standard functional connectivity (Fig 3A), in

line with the expectation that predicting independent data is a more stringent test. MVPD,

despite predicting independent data, outperformed both variants of univariate dependence

(Fig 3A). As a further comparison between univariate dependence and MVPD, we calculated

the proportion of variance explained by each model in independent data. Univariate depen-

dence did not explain more than 5% of the variance in any brain region, while MVPD

explained more than 20% of the variance in several regions, including the STS bilaterally and

posterior cingulate (Fig 3B).

As an additional test of the potential of MVPD, we analyzed multivariate dependence

between the pSTS seed and the rest of the brain after subtracting the univariate signal (Fig 4).

By doing so, we obtained an analysis procedure which is entirely complementary to standard

functional connectivity, which relies entirely on the univariate signal. Even after removing the

univariate signal, MVPD detected significant statistical dependence between the right pSTS

and posterior cingulate (peak MNI: 0 -63 28) as well as the left STS (peak MNI: -58 -10 -13).

In Experiment 2, standard functional connectivity identified statistical dependence between

the FFA seed and other regions of ventral temporal cortex, as well as with early visual cortex

Fig 3. A) Comparison between statistical dependence measured with standard functional connectivity

(‘univariate dependence’, blue), univariate dependence with leave-one-out predictions (red), and multivariate

dependence with leave-one-out predictions (MVPD, yellow) at a voxelwise FWE-corrected threshold p < 0.05.

Predicting independent data is a more stringent test of dependence: univariate dependence with leave-one-

out predictions individuates fewer significant voxels than standard functional connectivity. Despite the

stringent criterion imposed by independent predictions, MVPD with leave-one-out predictions outperforms

both univariate dependence methods, identifying significant statistical dependence with regions of posterior

cingulate and a broader extent of the superior temporal sulcus. B) Cross-validated R-squared with MVPD,

thresholded at 20%.

https://doi.org/10.1371/journal.pcbi.1005799.g003
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(peak MNI coordinates: 12,-90,-6), the right insula (peak MNI: 34,26,1), the thalamus (peak

MNI: -9,-23,11), dorsal visual stream area V7 (14, -70, 43) and intraparietal sulcus (IPS, peak

MNI: 30,-66,32; Fig 5, in blue, FWE-corrected p< 0.05, S3 Table). MVPD additionally identi-

fied statistical dependence between the FFA and posterior cingulate (pCing, peak MNI: 8,-

46,38), the right superior temporal sulcus (rSTS, peak MNI: 51,-25,-4), the right anterior tem-

poral lobe (rATL, peak MNI: 26 6 -33), right dorsomedial prefrontal cortex (rDMPFC, peak

MNI: 8 57 30), and the dorsal visual stream area V3A (peak MNI 15,-88,31; Fig 5, in yellow,

FWE-corrected p< 0.05, S4 Table). MVPD, unlike standard functional connectivity, did not

Fig 4. MVPD calculated after removing the univariate signal, in coronal (A), axial (B), and sagittal left

(C) and right (D) views. In this analysis, the average timecourse in the seed and each sphere is zero, and

only the patterns of responses are left. As a consequence, this analysis is fully complementary to standard

functional connectivity. Even after removing the univariate signal, MVPD detected significant statistical

dependence between the right pSTS and posterior cingulate as well as the left STS.

https://doi.org/10.1371/journal.pcbi.1005799.g004

Fig 5. Brain regions showing statistical dependence with the FFA as identified by standard functional

connectivity (blue) and multivariate pattern connectivity (MVPD, yellow) at a voxelwise FWE-

corrected threshold p < 0.05. MVPD, but not standard functional connectivity, identified statistical

dependence with regions of posterior cingulate, the right superior temporal sulcus, the right anterior temporal

lobe, the right DMPFC and regions of the dorsal visual stream. Standard functional connectivity identified

statistical dependence with the amygdala that was not detected by MVPD.

https://doi.org/10.1371/journal.pcbi.1005799.g005
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detect significant statistical dependence between FFA and the amygdala (peak MNI for stan-

dard functional connectivity: 22,0,-20). Even after regressing out the global signal and six

motion regressors generated by SPM during motion correction (S2 Fig), MVPD detected sig-

nificant dependence in the posterior cingulate (peak MNI: -2 -39 40), the dorsal visual stream

(peak MNI: -29 -76 29; 30 -75 32), occipital cortex (peak MNI: 18 -87 -10; -43 -79 -9).

Analysis of voxelwise cross-validated R-squared was performed for mean-based univariate

connectivity, and for MVPD with 1, 2, and 3 principal components. Increasing the number of

principal components led to a corresponding increase in the voxelwise cross-validated R-

squared (Fig 6A for voxels explaining more than 5% of voxelwise variance, (Fig 6B for voxels

explaining more than 10% of voxelwise variance). Cross-validated R-squared was also com-

puted after regressing out six motion parameters and the global signal as additional nuisance

regressors (S3 Fig). As expected, the greatest voxelwise cross-validated R-squared was observed

in the right fusiform gyrus, in the proximity of the seed region’s location. Thanks to the addi-

tional contribution of the second and third principal components, variance explained above

the 5% threshold was also observed more posteriorly extending towards the occipital face area

(OFA), in the left fusiform, and anteriorly extending towards the medial portions of the ante-

rior temporal lobes (ATL). These portions of cortex have been implicated together with FFA

in the recognition of faces. [1, 14, 15]. The inclusion of dimensions beyond the first PC

improved the modeling of statistical dependence between FFA and other regions implicated in

face recognition. The voxelwise cross-validated R-squared with univariate dependence

remained below 5% in the whole brain.

Including additional dimensions beyond the first improved our ability to characterize the

statistical dependence between responses in the FFA seed and responses in other brain regions

that have been implicated in face processing.

As in the case of Experiment 1, we performed an additional analysis removing the univari-

ate signal, obtaining a fully complementary analysis to standard functional connectivity. This

Fig 6. A) Regions with cross-validated R-squared above 5%, as measured by MVPD with 1, 2 and 3 principal components. B)

Regions with cross-validated R-squared above 10%, as measured by MVPD with 1, 2 and 3 principal components.

https://doi.org/10.1371/journal.pcbi.1005799.g006
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analysis revealed multivariate dependence between the FFA and ventral occipital regions

despite the univariate signal was removed (S4 Fig).

We then averaged the MVPD-searchlight maps for the first PC and for the second and

third PCs, and we studied the spatial distribution of the top 5000 voxels in the brain showing

greatest statistical dependence with the first PC (Fig 7B in yellow) and the top 5000 voxels in

the brain showing greatest statistical dependence with the second and third PCs (Fig 7B in

blue). The first PC showed greatest statistical dependence with voxels extending posteriorly

towards early stages in the visual processing hierarchy, and dorsally towards regions in the

dorsal visual stream. By contrast, the second and third PCs showed a different profile: stron-

gest statistical dependence was found with regions extending anteriorly, towards the medial

ATL. MVPD revealed different connectivity profiles for different dimensions of FFA’s repre-

sentational space, individuating two subspaces showing disproportionate statistical depen-

dence with regions involved in early and late visual processing respectively.

Discussion

This article introduces multivariate pattern connectivity (MVPD), a new method to investigate

the multivariate statistical dependence between brain regions. MVPD is characterized by sev-

eral key properties. First, the BOLD signal in each brain region is modeled as a set of responses

along multiple dimensions, with each dimension corresponding to a function of the voxels in

that region. Second, MVPD investigates the statistical dependence between two regions by

computing the extent to which the responses in the multiple dimensions characterizing one

region can predict the responses in the multiple dimensions characterizing the other region

over time. Third, with an analogy to MVPA methods, MVPD uses a cross-validation proce-

dure in which independent data are used for training and testing of the models. A subset of the

runs are used as a training set to generate parameters which are then tested assessing their abil-

ity to predict responses in a left-out independent run. This leave-one-out approach mitigates

Fig 7. A) Similarity matrix between the whole-brain maps of �r values obtained with MVPD for each participant reflecting the statistical

dependence between each voxel and the first, second, and third PC respectively in the FFA seed. B) Top 5000 voxels showing highest �r
values for the first PC (in yellow), and for the second and third PCs (in blue). Different subspaces of FFA responses show different MVPD

profiles, with the first dimension showing greatest statistical dependence with posterior ventral temporal regions and regions in the dorsal

visual stream, and the second and third dimensions showing greatest statistical dependence with anterior temporal regions.

https://doi.org/10.1371/journal.pcbi.1005799.g007
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the impact of noise, improving on most current methods that do not test the extent to which

relationships between regions are sufficiently stable to generalize to independent data.

There are two senses in which MVPD is multivariate. First, PCA identifies weighted combi-

nations of multiple voxels that covary over time explaining most of each region’s variance.

Therefore, the dimensions that describe the representational space in each region are a combi-

nation of multiple dependent variables. Second, in standard functional connectivity, statistical

dependence between two regions is measured by correlating two one-dimensional timecourses

(the average responses in each of two regions). Instead, in MVPD, statistical dependence is

measured by modeling a multiple linear regression that predicts a multi-dimensional time-

course (the responses along the multiple dimensions in one region) as a function of another

multi-dimensional timecourse (the responses along the multiple dimensions in the other

region).

In the examples described in the present article, dimensions are obtained with PCA as lin-

ear combinations of the voxels that tend to be jointly activated or deactivated over time. From

a neuroscientific perspective, we can think of each region as consisting of multiple neural pop-

ulations with selectivities for different properties of the stimuli that have different distributions

over the course of the experiment. Each population has different spatial distributions over vox-

els. This leads different weighted combinations of voxels to having different timecourses of

responses, whose dynamics can provide deeper insights into the interactions between regions

than the investigation of average responses. Of course, while different populations with differ-

ent selectivities and different spatial distributions can lead to dimensions with different time

courses, it is unlikely that individual dimensions obtained with PCA correspond in a one-to-

one relationship to neural populations with a specific selectivity profile. For example, more

than one neural population might be collapsed in a single principal component, or populations

might not be assigned to dimensions in a one-to-one mapping because of the orthogonality

constraints imposed by PCA.

Like standard functional connectivity, MVPD revealed statistical dependence between the

FFA and more posterior regions of ventral temporal and occipital cortex, and with regions in

early visual cortex. However, MVPD additionally revealed statistical dependence between the

FFA and the right ATL, previously implicated in the recognition of face identity [1, 13–15].

Furthermore, MVPD (but not standard functional connectivity) identified statistical depen-

dence between the FFA and the right STS, implicated in the recognition of person identity [21,

28–30] and of facial expressions [31–33]. Standard functional connectivity, but not MVPD,

identified statistical dependence between FFA and the amygdala. This can be due to less stable

predictive relationships between responses in the amygdala and FFA dimensions beyond the

first PC.

Previous studies investigating the functional connectivity of the FFA reported connectivity

with the STS in resting state data specifically when the responses in regions selective for other

categories were regressed out [34]. MVPD can help to disentangle different kinds of informa-

tion in the study of statistical dependence: face-specific information might load differentially

on different principal components, and the mapping between region can learn to rely specifi-

cally on the relevant information. Significant MVPD between FFA and STS might be observed

thanks to the potential of the method to rely selectively on a relevant subset of the information

encoded in FFA responses.

A recent study investigated effective connectivity between FFA and early visual cortex and

STS, including participants with developmental prosopagnosia as well as neurotypical controls

[35]. Feedforward connections from EVC to FFA and EVC to pSTS showed reduced strength

in DP participants. A promising direction for future research consists in applying MVPD to

study differences between patient populations and neurotypical controls, to investigate more
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closely whether neural differences affect specific subsets of the information encoded within a

brain region. In the case of developmental prosopagnosia, MVPD could be used to test

whether the reduced connectivity from EVC to FFA and pSTS is specific to particular response

dimensions within EVC and FFA.

MVPD led to important improvements in cross-validated R-squared at the voxel level over

mean-based univariate connectivity (Fig 6). MVPD using a single principal component already

improved variance explained over a mean-based univariate approach. Adding a second and a

third PC further improved variance explained in ventral temporal cortex as well as the anterior

temporal lobes. In the end, MVPD allowed us to separately investigate the connectivity profiles

of different dimensions of FFA’s representational space. In particular, different dimensions

showed stronger dependence with posterior and anterior regions respectively. Previous con-

nectivity studies found support for the view that posterior ventral stream regions are an entry

node in the face recognition network [36], and previous MVPA studies found evidence of

invariant representations of faces in anterior regions [1, 15]. In this context, the present evi-

dence suggests that different FFA dimensions encode information related to FFA’s inputs and

outputs respectively.

Future work can investigate the differences in MVPD between different tasks. Whether or

not MVPD is sensitive to task differences remains an open question. We consider this a key

research direction, in which the greater sensitivity of MVPD can reveal task-dependent

changes in the interactions between regions that cannot be detected by standard functional

connectivity.

In this study, we showed that MVPD can be sensitive to statistical dependence between

regions that is not detected by standard functional connectivity. MVPD has the potential to

study in even greater detail how statistical dependence is affected by different tasks. For exam-

ple, in different tasks, the dependence between two regions could remain similar in overall

magnitude, but shift from relying on a particular subset of dimensions to a different subset.

MVPD could be used to detect this type of task-dependent changes by analyzing not only the

overall amount of variance explained, but the matrix of parameters Btrain obtained in different

tasks. If some dimensions in one region have a greater influence on responses in another

region in one particular task, the parameters in Btrain corresponding to those dimensions will

increase in that task.

MVPD differs in important respects from previous techniques aimed at studying the

dynamic interactions between brain regions in terms of the information they encode. Unlike

previous techniques [18, 37], MVPD does not rely on discrimination between categories deter-

mined by the experimenter, but on dimensions derived in a data-driven fashion. The data-

driven dimensions can be related to properties of the stimuli or the task with a subsequent

model (for instance regressing dimensions on conditions, or on stimulus properties using a

forward model). Another difference between MVPD and the methods introduced by Cou-

tanche and Thompson-Schill [18, 19] is that the latter characterize each region with a single

measure (how well the pattern in a given timepoint can be assigned to one condition or

another), while MVPD adopts multiple measures (the values along the multiple dimensions),

which can provide a richer characterization of a region’s representation at any given time.

An innovative study [37] investigated the relations between brain regions measuring the

correlation between representational dissimilarity matrices in different regions. This approach

provides a richer characterization of each region’s representational structure by comparing

similarity matrices instead of classification accuracies, but it discards trial-by-trial variability.

Furthermore, correlations between dissimilarity matrices can only be computed if the same set

of conditions are used to generate the dissimilarity matrices in each region. When the condi-

tions correspond to individual stimuli as in [37] this is not problematic, but if stimulus
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categories are used it raises the question of whether it is appropriate to characterize the repre-

sentational spaces of very different brain regions in terms of the dissimilarities between the

same set of categories. Taking images of objects as an example of stimuli, categorization based

on animacy could be most appropriate for some brain regions, while categorization based on

color could be more appropriate for other regions.

An additional approach has used distance correlation to capture multivariate dependences

between regions [38], finding more robust results than traditional correlations for inhomoge-

neous regions. MVPD offers as advantages over this approach the ability to test stability of the

dependence between two regions in independent data, and to analyze dependence for different

representational subspaces (e.g. Fig 7). This feature of MVPD makes it possible to relate the

dimensions characterizing a region’s responses to stimulus properties using forward models,

to then investigate what representational content drives statistical dependence between two

regions.

More generally, methods to model multivariate statistical dependence can be described by

the way in which they model the responses of individual regions, and by the way in which they

model the dependence between the regions. Some methods (e.g. [18, 19]) use multivariate

methods to generate a unidimensional quantity (e.g. classification accuracy), and measure sta-

tistical dependence relating these unidimensional quantities between regions (e.g. with corre-

lation). Other methods (e.g. [37, 39]) map directly the responses along multiple voxels in one

region onto responses along multiple voxels in another. MVPD combines the two strategy by

initially mapping the multi-voxel responses in each region onto a small set of dimensions (thus

reducing the number of parameters that need to be estimated), and then modeling the multi-

variate relationship between these dimensionality-reduced patterns (e.g. with multiple

regression).

By virtue of modeling the statistical dependence between patterns of responses in different

regions, which likely correspond to different processing stages, multivariate measures of

dependence are related to some extent to the approach of developing computational models of

information processing and using them to predict neural responses [40, 41]. Two key differ-

ences between these approaches are that at present, computational models of information pro-

cessing have more sophisticated tools to relate neural responses to stimulus properties, but the

model parameters are trained independently of neural responses. By contrast, while multivari-

ate dependence does not yet have the same level of sophistication in linking neural responses

to stimulus properties, it gives the neural data a more predominant role in shaping the result-

ing models, by estimating parameters directly using the fMRI measurements. A recent article

[42] built a model of visual cortex more closely inspired to the architecture of the brain, mak-

ing a step in the direction of combining these two strengths. Future work will be necessary to

constrain computational models taking full advantage of the wealth of information available

in neural measurements while also tying the neural responses to the stimulus content they

represent.

The most important asset of MVPD is probably its flexibility. The framework of 1) model-

ling representational spaces in individual regions, 2) considering multivariate timecourses as

trajectories in these representational spaces, and 3) fitting models predicting the trajectory in

the representational space of one region as a function of the trajectory in the representational

space in another offers a wealth of possibilities to build increasingly refined models, both in

terms of the characterization of representational spaces and in terms of the models of their

interactions. For the characterization of representational spaces, in this article we adopted

PCA as a simple example, but other methods such as independent component analysis (ICA)

and nonlinear dimensionality reduction techniques can also be used. For modelling interac-

tions between regions, we limited the current application to simultaneous, non-directed
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interactions following an approach similar to functional connectivity, but MVPD makes it pos-

sible to model nonlinear maps between representational spaces [43], and to use models that

investigate the directionality of interactions using temporal precedence, along the lines of

Granger Causality [8], Dynamic Causal Modelling [7], and Dynamic Network Modelling [11].
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