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Abstract Neurons in higher cortical areas, such as the prefrontal cortex, are often tuned to a

variety of sensory and motor variables, and are therefore said to display mixed selectivity. This

complexity of single neuron responses can obscure what information these areas represent and

how it is represented. Here we demonstrate the advantages of a new dimensionality reduction

technique, demixed principal component analysis (dPCA), that decomposes population activity into

a few components. In addition to systematically capturing the majority of the variance of the data,

dPCA also exposes the dependence of the neural representation on task parameters such as

stimuli, decisions, or rewards. To illustrate our method we reanalyze population data from four

datasets comprising different species, different cortical areas and different experimental tasks. In

each case, dPCA provides a concise way of visualizing the data that summarizes the task-

dependent features of the population response in a single figure.

DOI: 10.7554/eLife.10989.001

Introduction
In many state of the art experiments, a subject, such as a rat or a monkey, performs a behavioral

task while the activity of tens to hundreds of neurons in the animal’s brain is monitored using electro-

physiological or imaging techniques. The common goal of these studies is to relate the external task

parameters, such as stimuli, rewards, or the animal’s actions, to the internal neural activity, and to

then draw conclusions about brain function. This approach has typically relied on the analysis of sin-

gle neuron recordings. However, as soon as hundreds of neurons are taken into account, the com-

plexity of the recorded data poses a fundamental challenge in itself. This problem has been

particularly severe in higher-order areas such as the prefrontal cortex, where neural responses dis-

play a baffling heterogeneity, even if animals are carrying out rather simple tasks (Brody et al.,

2003; Machens et al., 2010; Hernández et al., 2010; Mante et al., 2013; Rigotti et al., 2013).

Traditionally, this heterogeneity has often been neglected. In neurophysiological studies, it is

common practice to pre-select cells based on particular criteria, such as responsiveness to the same

stimulus, and to then average the firing rates of the pre-selected cells. This practice eliminates much

of the richness of single-cell activities, similar to imaging techniques with low spatial resolution, such

as MEG, EEG, or fMRI. While population averages can identify some of the information that higher-

order areas process, they ignore much of the fine structure of the single cell responses

(Wohrer et al., 2013). Indeed, most neurons in higher cortical areas will typically encode several
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task parameters simultaneously, and therefore display what has been termed mixed selectivity

(Rigotti et al., 2013; Pagan and Rust, 2014; Park et al., 2014; Raposo et al., 2014).

Instead of looking at single neurons and selecting from or averaging over a population of neu-

rons, neural population recordings can be analyzed using dimensionality reduction methods (for a

review, see Cunningham and Yu, 2014). In recent years, several such methods have been developed

that are specifically targeted to electrophysiological data, working on the level of single spikes

(Pfau et al., 2013), accommodating different time scales of latent variables (Yu et al., 2009), or

accounting for the dynamics of the population response (Buesing et al., 2012a;

2012b; Churchland et al., 2012). However, these approaches reduce the dimensionality of the data

without taking task parameters, i.e., sensory and motor variables controlled or monitored by the

experimenter, into account. Consequently, mixed selectivity remains in the data even after the

dimensionality reduction step.

The problem can be addressed by dimensionality reduction methods that are informed by the

task parameters (Machens et al., 2010; Machens, 2010; Brendel et al., 2011; Mante et al., 2013;

Raposo et al., 2014). We have previously introduced a dimensionality reduction technique, demixed

principal component analysis (dPCA) (Brendel et al., 2011), that emphasizes two goals. It aims to

find a decomposition of the data into latent components that (a) are easily interpretable with respect

to the experimentally controlled and monitored task parameters; and (b) preserve the original data

as much as possible, ensuring that no valuable information is thrown away. Here we present a radi-

cally modified version of this method, and illustrate that it works well on a wide variety of experimen-

tal data. The new version of the method has the same objectives as the older version (Brendel et al.,

2011), but is more principled, more flexible, and has an analytical solution, meaning that it does not

suffer from any numerical optimization problems. Furthermore, the new mathematical formulation

highlights similarities to and differences from related well-known methods such as principal compo-

nent analysis (PCA) and linear discriminant analysis (LDA).

The dPCA code is available at http://github.com/machenslab/dPCA for Matlab and Python.

eLife digest Many neuroscience experiments today involve using electrodes to record from the

brain of an animal, such as a mouse or a monkey, while the animal performs a task. The goal of such

experiments is to understand how a particular brain region works. However, modern experimental

techniques allow the activity of hundreds of neurons to be recorded simultaneously. Analysing such

large amounts of data then becomes a challenge in itself.

This is particularly true for brain regions such as the prefrontal cortex that are involved in the

cognitive processes that allow an animal to acquire knowledge. Individual neurons in the prefrontal

cortex encode many different types of information relevant to a given task. Imagine, for example,

that an animal has to select one of two objects to obtain a reward. The same group of prefrontal

cortex neurons will encode the object presented to the animal, the animal’s decision and its

confidence in that decision. This simultaneous representation of different elements of a task is called

a ‘mixed’ representation, and is difficult to analyse.

Kobak, Brendel et al. have now developed a data analysis tool that can ‘demix’ neural activity.

The tool breaks down the activity of a population of neurons into its individual components. Each of

these relates to only a single aspect of the task and is thus easier to interpret. Information about

stimuli, for example, is distinguished from information about the animal’s confidence levels.

Kobak, Brendel et al. used the demixing tool to reanalyse existing datasets recorded from several

different animals, tasks and brain regions. In each case, the tool provided a complete, concise and

transparent summary of the data. The next steps will be to apply the analysis tool to new datasets to

see how well it performs in practice. At a technical level, the tool could also be extended in a

number of different directions to enable it to deal with more complicated experimental designs in

future.

DOI: 10.7554/eLife.10989.002
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Results

Existing approaches
We illustrate the classical approaches to analyzing neural activity data from higher-order areas in Fig-

ure 1. To be specific, we consider recordings from the prefrontal cortex (PFC) of monkeys perform-

ing a somatosensory working memory task (Romo et al., 1999; Brody et al., 2003). In this task,

monkeys were required to discriminate two vibratory stimuli presented to the fingertip. The stimuli

F1 and F2 were separated by a 3 s delay, and the monkeys had to report which stimulus had a

higher frequency by pressing one of the two available buttons (Figure 1a).

Figure 1. Existing approaches to population analysis, illustrated with recordings from monkey PFC during a somatosensory working memory task

(Romo et al., 1999). (a) Cartoon of the paradigm, adapted from Romo and Salinas (2003). Legend shows 12 experimental conditions. (b) Average per-

condition firing rates (PSTHs) for four exemplary neurons out of N ¼ 832. Colors refer to stimulus frequencies F1 and line styles (dashed/solid) refer to

decision, see legend in (a). (c) Fraction of cells, significantly (p<0:05, two-way ANOVA) tuned to stimulus and decision at each time point. (d) Left:

Distribution of stimulus tuning effect sizes across neural population at F1 period (black arrow in c). Significantly tuned neurons are shown in dark gray.

Right: Same for decision at F2 period (gray arrow in c). (e) The average of zero-centered PSTHs over all significantly tuned neurons (for neurons with

negative effect size, the sign of PSTHs was flipped). Arrows mark time-points that were used to select the significant cells. (f) Fraction of cells,

significantly (p<0:05, linear regression) tuned to stimulus and decision at each time point. (g) Distribution of regression coefficients of neural firing rates

to stimulus (during F1 period) and decision (during F2 period). (h) Stimulus and decision components produced by the method of Mante et al. (2013).

Briefly, neural PSTHs are weighted by the regression coefficients. (i) Fraction of variance captured by the first 20 principal components. (j) Distributions

of weights used to produce the first six principal components (weights are elements of the eigenvectors of the N � N covariance matrix). (k) First six

principal components (projections of the full data onto the eigenvector directions).

DOI: 10.7554/eLife.10989.003
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When we focus on the neural representation of the stimulus F1 and the decision, we have to take

12 experimental conditions into account (six possible values of F1 and two possible decisions). For

each of these conditions, we can average each neuron’s spike trains over trials and then smooth the

resulting time series in order to estimate the neuron’s time-dependent firing rate (also known as

peri-stimulus time histogram or PSTH). We find that the PSTHs of many neurons are tuned to the

stimulus F1, the decision, or both (Figure 1b; so-called mixed selectivity), and different neurons gen-

erally show different tuning. Our goal is to characterize and summarize the tuning of all N recorded

neurons.

The most standard and widespread approach is to resort to a statistical test (e.g. a two-way anal-

ysis of variance or ANOVA), in order to check whether the firing rate of a neuron depends signifi-

cantly on the frequency F1 or on the monkey’s decision. Such a test can be run for each neuron and

each time point, in which case the population tuning over time is often summarized as the fraction

of cells significantly tuned to stimulus or decision at each time point (p<0:05, Figure 1c). In addition

to providing such a ’summary statistics’, this approach is also used to directly visualize the popula-

tion activity. For that purpose, one selects the subset of neurons significantly tuned to stimulus or

decision (e.g. by focusing on a particular time point, Figure 1d) and then averages their PSTHs. The

resulting ’population average’ is shown in Figure 1e, where we also took the sign of the effect size

into account. The population average is generally thought to demonstrate the ’most typical’ firing

pattern among the cells encoding the corresponding parameter. Importantly, this method yields one

single population average or ’component’ for each parameter. Each such component can be under-

stood as a linear combination (or a linear readout) of the individual PSTHs, with all Ns significant neu-

rons for a parameter having the same weights �1=Ns and all others having weight zero.

In a related approach, the firing rates of each neuron at each time point are linearly regressed on

stimulus and decision (Figure 1f) (Brody et al., 2003). Mante et al. (2013) suggested to use the

regression coefficients of all N neurons (Figure 1g) as weights to form linear combinations of PSTHs

representing stimulus and decision tuning (Figure 1h). This approach, which the authors call ’tar-

geted dimensionality reduction’ (TDR), also yields one component per task parameter: in our exam-

ple, we obtain one component for the stimulus and one for the decision (Figure 1h; see

Materials and methods for details).

Both of these approaches are supervised, meaning that they are informed by the task parameters.

At the same time, they do not seek to faithfully represent the whole dataset and are prone to losing

some information about the neural activities. Indeed, the two components from Figure 1e explain

only 23% of the total variance of the population firing rates and the two components from

Figure 1h explain only 22% (see Materials and methods). Consequently, a naive observer would not

be able to infer from the components what the original neural activities looked like.

While such supervised approaches can be extended in various ways to produce more components

and capture more variance, a more direct way to avoid this loss of information is to resort to unsu-

pervised methods such as principal component analysis (PCA). This method extracts a set of princi-

pal components (PCs) that are linear combinations of the original PSTHs, just as the population

averages above. However, the weights to form these linear combinations are chosen so as to maxi-

mize the amount of explained variance (first six components explain 69% of variance, see Figure 1i–

k). The principal components can be thought of as ’building blocks’ of neural activity: PSTHs of

actual neurons are given by linear combinations of PCs, with the first PCs being more informative

than the later ones. However, since PCA is an unsupervised method, information about stimuli and

decisions is not taken into account, and the resulting components can retain mixed selectivity and

therefore fail to highlight neural tuning to the task parameters.

The most striking observation when comparing supervised and unsupervised approaches is how

different the results look. Indeed, PCA paints a much more complex picture of the population activ-

ity, dominated by strong temporal dynamics, with several stimulus- and decision-related compo-

nents. At the same time, none of the methods can fully demix the stimulus and decision information:

even the supervised methods show decision-related activity in the stimulus components and stimu-

lus-related activity in the decision components (Figure 1e,h).

Demixed principal component analysis (dPCA)
To address these problems, we developed a modified version of PCA that not only compresses the

data, but also demixes the dependencies of the population activity on the task parameters. We will
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first explain that these two goals generally constitute a trade-off, then suggest a solution to this

trade-off for a single task parameter, and then generalize to multiple task parameters.

The trade-off between demixing and compression is illustrated in Figure 2, where we compare

linear discriminant analysis (LDA, Figure 2a,b), PCA (Figure 2c,d), and dPCA (Figure 2e–h). We will

first focus on a single task parameter and seek to reduce the activity of N ¼ 2 neurons responding to

three different stimuli. For each stimulus, the joint activity of the two neurons traces out a trajectory

Figure 2. Linear dimensionality reduction. (a) Linear discriminant analysis maps the firing rates of individual neurons onto a latent component that

allows us to decode a task parameter of interest. Shades of grey inside each neuron show the proportion of variance due to the various task parameters

(e.g. stimulus, decision, and time), illustrating mixed selectivity. In contrast, the LDA component is maximally demixed. (b) At any moment in time, the

population firing rate of N neurons is represented by a point in the N-dimensional space; here N ¼ 2. Each trial is represented by a trajectory in this

space. Colors indicate different stimuli and dot sizes represent time. The LDA component for stimulus is given by the projection onto the LDA axis

(black line); projections of all points are shown along this line. All three stimuli are clearly separated, but their geometrical relation to each other is lost.

(c) Principal component analysis linearly maps the firing rates into a few principal components such that a second linear transformation can reconstruct

the original firing rates. (d) The same set of points as in (b) is projected onto the first PCA axis. However, the stimuli are no longer separated. Rather,

the points along the PCA axis have complex dependencies on stimulus and time (mixed selectivity). The PCA axis minimizes the distances between the

original points and their projections. (e) Demixed principal component analysis also compresses and decompresses the firing rates through two linear

transformations. However, here the transformations are found by both minimizing the reconstruction error and enforcing a demixing constraint on the

latent variables. (f) The same set of points as in (b) projected onto the first dPCA decoder axis. The three stimuli are clearly separated (as in LDA), but

some information about the relative distances between classes is preserved as well (as in PCA). (g) The same data as in (b) linearly decomposed into the

time effect, the stimulus effect, and the noise. (h) The dPCA projection from (f) has to be mapped onto a different axis, given by the dPCA encoder, in

order to reconstruct the stimulus class means (large colored circles). The decoder and encoder axes together minimize the reconstruction error

between the original data and the stimulus class means.

DOI: 10.7554/eLife.10989.004
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in the space of firing rates as time progresses (Figure 2b). The aim of ’demixing’ in this simplified

case is to find a linear mapping (decoder) of the neural activity that separates the different stimuli

(Figure 2a) and ignores the time-dependency. We can use LDA in order to determine a projection

of the data that optimally separates the three stimuli. However, LDA will generally not preserve the

’geometry’ of the original neural activity: firing patterns for stimuli 1 and 2 are close to each other

and far away from stimulus 3, whereas in the LDA projection all three stimuli are equally spaced

(Figure 2b). More generally, decoding is always prone to distorting the data and therefore tends to

impede a proper reconstruction of the original data from the reduced description.

The aim of compression is to find a linear mapping (decoder) that reduces the dimensionality and

preserves the original data as much as possible (Figure 2c,d). Using PCA, we determine a projection

of the data that minimizes the reconstruction error between the projections and the original points.

In contrast to LDA, PCA seeks to preserve the geometry of the neural activity, and thereby yields

the most faithful reduction of the data (Figure 2d). However, the PCA projection does not properly

separate the stimuli and mixes the time-dependency with the stimulus-dependency.

The wildly different projection axes for LDA (Figure 2b) and PCA (Figure 2d) seem to suggest

that the goals of demixing and compression are essentially incompatible in this example. However,

we can achieve both goals by assuming that the reconstruction of the original data works along a

separate encoder axis (Figure 2f,h). Given this additional flexibility, we first choose a decoder axis

that reconciles the decoding and compression objectives. Once projected onto this axis, all three

stimuli are separated from each other, as in LDA, yet their geometrical arrangement is approximately

preserved, as in PCA (Figure 2f). In turn, when reconstructed along the encoder axis, the projected

data still approximates the original data (Figure 2h).

To define these ideas more formally, we assume that we simultaneously recorded the spike trains

of N neurons. Let X be our data matrix with N rows, in which the i-th row contains the instantaneous

firing rate (i.e. binned or smoothed spike train) of the i-th neuron for all task conditions and all trials

(assumed to be centered, i.e., with row means subtracted). Classical PCA compresses the data with

a decoder matrix D. The resulting principal components can then be linearly de-compressed through

an encoder matrix D>, approximately reconstructing the original data (Hastie et al., 2009). The

optimal decoder matrix is found by minimizing the squared error between the original data, X, and

the reconstructed data, D>DX, given by

LPCA ¼ kX�D>DXk2:

In the toy example of Figure 2, the data matrix X is of size 2� 15, and the decoder matrix D is of

size 1� 2. Crucially, the information about task parameters does not enter the loss function and

hence PCA neither decodes nor demixes these parameters.

In our method, which we call demixed PCA (dPCA), we make two changes to this classical formu-

lation. First, we require that the compression and decompression steps reconstruct not the neural

activity directly, but the neural activity averaged over trials and over some of the task parameters. In

the toy example, the reconstruction target is the matrix of stimulus averages, Xs, which has the

same size as X, but in which every data point is replaced by the average neural activity for the corre-

sponding stimulus, as shown in Figure 2h. Second, we gain additional flexibility in this quest by com-

pressing the data with a linear mapping D, yet decompressing it with another linear mapping F

(Figure 2e). The respective matrices are chosen by minimizing the loss function

LdPCA ¼ kXs�FDXk2:

Accordingly, for each stimulus, the neural activities are projected close to the average stimulus,

which allows us both to decode the stimulus value and to preserve the relative distances of the neu-

ral activities.

In order to see how this approach preserves all aspects of the original data, and not just some

averages, we note that the data in our toy example included both stimulus and time. The matrix Xs

can be understood as part of a linear decomposition of the full data X into parameter-specific aver-

ages: a time-varying part, Xt, that is obtained by averaging X over stimuli, and a stimulus-varying

part, Xs, that is obtained by averaging X over time. Any remaining parts of the activity are captured

in a noise term (Figure 2g). In turn, we can find separate decoder and encoder axes for each of

these averages. Once more than N ¼ 2 neurons are considered, these decoder and encoder axes
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constitute a dimensionality reduction step that reduces the data into a few components, each of

which properly decodes one of the task parameters. In turn, the original neural activity can be recon-

structed through linear combinations of these components, just as in PCA.

The key ideas of this toy example can be extended to any number of task parameters. In this

manuscript, all datasets will have three parameters: time, stimulus, and decision, and we will decom-

pose the neural activities into five parts: condition-independent, stimulus-dependent, decision-

dependent, dependent on the stimulus-decision interaction, and noise (see Figure 8 in the

Materials and methods):

Figure 3. Demixed PCA applied to recordings from monkey PFC during a somatosensory working memory task (Romo et al., 1999). (a) Cartoon of the

paradigm, adapted from Romo and Salinas (2003). (b) Demixed principal components. Top row: first three condition-independent components;

second row: first three stimulus components; third row: first three decision components; last row: first stimulus/decision interaction component. In each

subplot, the full data are projected onto the respective dPCA decoder axis, so that there are 12 lines corresponding to 12 conditions (see legend).

Thick black lines show time intervals during which the respective task parameters can be reliably extracted from single-trial activity (using pseudotrials

with all recorded neurons), see Materials and methods. Note that the vertical scale differs across rows. Ordinal number of each component is shown in

a circle; explained variances are shown as percentages. (c) Cumulative variance explained by PCA (black) and dPCA (red). Demixed PCA explains

almost the same amount of variance as standard PCA. Dashed line shows an estimate of the fraction of ’signal variance’ in the data, the remaining

variance is due to noise in the PSTH estimates (see Materials and methods). (d) Variance of the individual demixed principal components. Each bar

shows the proportion of total variance, and is composed out of four stacked bars of different color: gray for condition-independent variance, blue for

stimulus variance, red for decision variance, and purple for variance due to stimulus-decision interactions. Each bar appears to be single-colored, which

signifies nearly perfect demixing. Pie chart shows how the total signal variance is split among parameters. (e) Upper-right triangle shows dot products

between all pairs of the first 15 demixed principal axes. Stars mark the pairs that are significantly and robustly non-orthogonal (see

Materials and methods). Bottom-left triangle shows correlations between all pairs of the first 15 demixed principal components. Most of the correlations

are close to zero.

DOI: 10.7554/eLife.10989.005
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X¼Xt þXst þXdt þXsdt þXnoise ¼
X

f

XfþXnoise:

Individual terms are again given by a series of averages. This decomposition is fully analogous to the

variance (covariance) decomposition done in ANOVA (MANOVA). The only important difference is

that the standard (M)ANOVA decomposition for three parameters A, B, and C, would normally have

23 ¼ 8 terms corresponding to the main effects of A, B, C, pairwise interactions AB, BC, and AC,

three-way interaction ABC, and the noise. Here we join some of these terms together, as we are not

interested in demixing those (see Materials and methods).

Once this decomposition is performed, dPCA finds separate decoder and encoder matrices for

each term f by minimizing the loss function

LdPCA ¼
X

f

kXf �FfDfXk2:

Each term within the sum can be minimized separately by using reduced-rank regression, the solu-

tion of which can be obtained analytically in terms of singular value decompositions (see

Materials and methods). Each row d of each Df yields one demixed principal component dX and,

similar to PCA, we order the components by the amount of explained variance. Note that the

decoder/encoder axes corresponding to two different task parameters f1 and f2 are found indepen-

dently from each other and may end up being non-orthogonal (in contrast to PCA where principal

axes are all orthogonal). In a nutshell, the loss function ensures that each set of decoder/encoder

axes reconstructs the individual, parameter-specific terms, Xf, thereby yielding proper demixing,

and the data decomposition ensures that the combination of all decoder/encoder pairs allows to

reconstruct the original data, X.

There are a few other technical subtleties (see Materials and methods for details). (1) We formu-

lated dPCA for simultaneously recorded neural activities. However, all datasets analyzed in this man-

uscript have been recorded sequentially across many sessions, and so to apply dPCA we have to use

’pseudo-trials’. (2) Similar to any other decoding method, dPCA is prone to overfitting and so we

introduce a regularization term and perform cross-validation to choose the regularization parameter.

(3) The data and variance decompositions from above are exact only if the dataset is balanced, i.e.,

if the same number of trials were recorded in each condition. If this is not the case, one can use a re-

balancing procedure. (4) A previous version of dPCA (Brendel et al., 2011) used the same variance

decomposition but a different and less flexible loss function. The differences are layed out in the

Materials and methods section.

Somatosensory working memory
task in monkey PFC
We first applied dPCA to the dataset presented

above (Romo et al., 1999; Brody et al., 2003),

encompassing 832 neurons from two animals. As

is typical for PFC, each neuron has a distinct

response pattern and many neurons show mixed

selectivity (some examples are shown in

Figure 1b). Several previous studies have sought

to make sense of these heterogeneous response

patterns by separately analyzing different task

periods, such as the stimulation and delay peri-

ods (Romo et al., 1999; Brody et al., 2003;

Machens et al., 2010; Barak et al., 2010), the

decision period (Jun et al., 2010), or both

(Hernández et al., 2010). With dPCA, however,

we can summarize the main features of the neural

activity across the whole trial in a single figure

(Figure 3).

Video 1. Stimulus representation in the somatosensory

working memory task Two leading stimulus dPCs in the

somatosensory working memory task (components #5

and #10 as horizontal and vertical axis

correspondingly). Each frame of this movie corresponds

to one time point t. Each dot is the average between

two decision conditions with the same F1 stimulus.

Fading ’tails’ show last sections of the trajectories. See

Figure 3 for the color code.

DOI: 10.7554/eLife.10989.006
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Just as in PCA, we can think of the demixed principal components (Figure 3b) as the ’building

blocks’ of the observed neural activity, in that the activity of each single neuron is a linear combina-

tion (weighted average) of these components. These building blocks come in four distinct catego-

ries: some are condition-independent (Figure 3b, top row); some depend only on stimulus F1

(second row); some depend only on decision (third row); and some depend on stimulus and decision

together (bottom row). The components can be easily seen to demix the parameter dependencies,

which is exactly what dPCA aimed for. Indeed, the components shown in Figure 3b are projections

of the PSTHs of all neurons onto the most prominent decoding axes; each projection (each subplot)

shows 12 lines corresponding to 12 conditions. As intended, condition-independent components

have all 12 lines closely overlapping, stimulus components have two lines for each stimulus closely

overlapping, etc.

The overall variance explained by the dPCA components (Figure 3c, red line) is very close to the

overall variance explained by the PCA components (black line). Accordingly, we barely lost any vari-

ance by imposing the demixing constraint, and the population activity is accurately represented by

the obtained dPCA components.

The dPCA analysis captures the major findings previously obtained with these data: the persis-

tence of the F1 tuning during the delay period (component #5; Romo et al., 1999; Machens et al.,

Figure 4. Demixed PCA applied to recordings from monkey PFC during a visuospatial working memory task (Qi et al., 2011). Same format as

Figure 3. (a) Cartoon of the paradigm, adapted from Romo and Salinas (2003). (b) Demixed principal components. In each subplot there are ten lines

corresponding to ten conditions (see legend). Color corresponds to the position of the last shown stimulus (first stimulus for t< 2 s, second stimulus for

t> 2 s). In non-match conditions (dashed lines) the colour changes at t ¼ 2 s. Solid lines correspond to match conditions and do not change colors. (c)

Cumulative variance explained by PCA and dPCA components. Dashed line marks fraction of signal variance. (d) Explained variance of the individual

demixed principal components. Pie chart shows how the total signal variance is split between parameters. (e) Upper-right triangle shows dot products

between all pairs of the first 15 demixed principal axes, bottom-left triangle shows correlations between all pairs of the first 15 demixed principal

components.

DOI: 10.7554/eLife.10989.007
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2005), the temporal dynamics of short-term memory (components ##5, 10, 13; Brody et al., 2003;

Machens et al., 2010; Barak et al., 2010), the ’ramping’ or ’climbing’ activities in the delay period

(components ##1–3; Brody et al., 2003; Machens et al., 2010); and pronounced decision-related

activities (component #6, Jun et al., 2010). We note that the decision components resemble deriva-

tives of each other; these higher-order derivatives likely arise due to slight variations in the timing of

responses across neurons (see Appendix B for more details).

The first stimulus component (#5) looks similar to the stimulus components that we obtained with

standard regression-based methods (Figure 1e,h) but now we have further components as well.

Together they show how stimulus representation evolves in time. In particular, plotting the first two

stimulus components against each other (see Video 1) illustrates how stimulus representation rotates

in the neural space during the delay period so that the encoding subspaces during F1 and F2 peri-

ods are not the same (but far from orthogonal either).

As explained above, the demixed principal axes are not constrained to be orthogonal. The angles

between the encoding axes are shown in Figure 3e, upper-right triangle; we discuss them later,

together with other datasets. Pairwise correlations between components are all close to zero

(Figure 3e, lower-left triangle), as should be expected since the components are considered to rep-

resent independent signals.

To assess whether the condition tuning of individual dPCA components was statistically signifi-

cant, we used each component as a linear decoder to classify conditions. Specifically, stimulus com-

ponents were used to classify stimuli, decision components to classify decisions, and interaction

components to classify all 12 conditions. We used cross-validation to measure time-dependent clas-

sification accuracy and a shuffling procedure to assess whether it was significantly above chance (see

Materials and methods). Time periods of significant tuning are marked in Figure 3b with horizontal

black lines.

Visuospatial working memory task in monkey PFC
We next applied dPCA to recordings from the PFC of monkeys performing a visuospatial working

memory task (Qi et al., 2011, 2012; Meyer et al., 2011). In this task, monkeys first fixated a small

white square at the centre of a screen, after which a square S1 appeared for 0.5 s in one of eight

locations around the centre (Figure 4a). After a 1.5 s delay, a second square S2 appeared

for 0.5 s in either the same (’match’) or the opposite (’non-match’) location. Following another 1.5 s

delay, a green and a blue choice target appeared in locations orthogonal to the earlier presented

stimuli. Monkeys had to saccade to the green target to report a match condition, and to the blue

one to report a non-match.

We analyzed the activity of 956 neurons recorded in the lateral PFC of two monkeys performing

this task. Proceeding exactly as before, we obtained the average time-dependent firing rate of each

neuron for each condition. Following the original studies, we eliminated the trivial rotational symme-

try of the task by collapsing the eight possible stimulus locations into five locations that are defined

with respect to the preferred location of each neuron (0˚, 45˚, 90˚, 135˚, or 180˚ away from the pre-

ferred location, see Materials and methods). As a consequence, we obtained ten conditions: five

possible stimulus locations, each paired with two possible decisions of the monkey.

The dPCA results are shown in Figure 4. As before, stimulus and decision are well separated at

the population level despite being intermingled at the single-neuron level; at the same time dPCA

captures almost the same amount of variance as PCA. One notable difference from before is the

presence of strong interaction components in Figure 4b. However, these interaction components

are in fact stimulus components in disguise. In match trials, S2 and S1 appear at the same location,

and in non-match trials at opposite locations. Information about S2 is therefore given by a non-linear

function of stimulus S1 and the trial type (i.e. decision), which is here captured by the interaction

components.

Here again, our analysis summarizes previous findings obtained with this dataset. For instance,

the first and the second decision components show tuning to the match/non-match decision during

the S2 period and in the subsequent delay period. Using these components as fixed linear decoders,

we achieve single-trial classification accuracy of match vs. non-match of 75% for t> 2 (cross-validated,

see Materials and methods, Figure 12), which is approximately equal to the state-of-the-art classifi-

cation performance reported previously (Meyers et al., 2012).
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Constantinidis et al. have also recorded population activity in PFC before starting the training

(both S1 and S2 stimuli were presented exactly as above, but there were no cues displayed and no

decision required). When analyzing this pre-training population activity with dPCA, the first stimulus

and the first interaction components come out close to the ones shown in Figure 4, but there are no

decision and no ’memory’ components present (data not shown), in line with previous findings

(Meyers et al., 2012). These task-specific components appear in the population activity only after

extensive training.

Olfactory discrimination task in rat OFC
Next, we applied dPCA to recordings from the OFC of rats performing an odor discrimination task

(Feierstein et al., 2006). This behavioral task differs in two crucial aspects from the previously con-

sidered tasks: it requires no active storage of a stimulus, and it is self-paced. To start a trial, rats

entered an odor port, which triggered delivery of an odor with a random delay of 0.2–0.5 s. Each

odor was uniquely associated with one of the two available water ports, located to the left and to

the right from the odor port (Figure 5a). Rats could sample the odor for as long as they wanted (up

to 1 s), and then had to move to one of the water ports. If they chose the correct water port, reward

was delivered following an anticipation period of random length (0.2–0.5 s).

Figure 5. Demixed PCA applied to recordings from rat OFC during an olfactory discrimination task (Feierstein et al., 2006). Same format as Figure 3.

(a) Cartoon of the paradigm, adapted from Wang et al. (2013). (b) Each subplot shows one demixed principal component. In each subplot there are

four lines corresponding to four conditions (see legend). Two out of these four conditions were rewarded and are shown by thick lines. (c) Cumulative

variance explained by PCA and dPCA components. (d) Explained variance of the individual demixed principal components. Pie chart shows how the

total signal variance is split between parameters. (e) Upper-right triangle shows dot products between all pairs of the first 15 demixed principal axes,

bottom-left triangle shows correlations between all pairs of the first 15 demixed principal components.

DOI: 10.7554/eLife.10989.008
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We analyzed the activity of 437 neurons recorded in five rats in four conditions: two stimuli (left

and right) each paired with two decisions (left and right). Two of these conditions correspond to cor-

rect (rewarded) trials, and two correspond to error (unrewarded) trials. Since the task was self-paced,

each trial had a different length; in order to align events across trials, we restretched (time-warped)

the firing rates in each trial (see Materials and methods). Alignment methods without time warping

led to similar results (data not shown).

Just as neurons from monkey PFC, neurons in rat OFC exhibit diverse firing patterns and mixed

selectivity (Feierstein et al., 2006). Nonetheless, dPCA was able to demix the population activity

(Figure 5). In this dataset, interaction components separate rewarded and unrewarded conditions

(thick and thin lines in Figure 5b, bottom row), i.e., correspond to neurons tuned either to reward,

or to the absence of reward.

The overall pattern of neural tuning across task epochs agrees with the findings of the original

study (Feierstein et al., 2006). Interaction components are by far the most prominent among all the

condition-dependent components, corresponding to the observation that many neurons are tuned

to the presence/absence of reward. Decision components come next, with the caveat that decision

information may also reflect the rat’s movement direction and/or position, as was pointed out previ-

ously (Feierstein et al., 2006). Stimulus components are less prominent, but nevertheless show clear

Figure 6. Demixed PCA applied to recordings from rat OFC during an olfactory categorization task (Kepecs et al., 2008). Same format as Figure 3 (a)

Cartoon of the paradigm, adapted from Wang et al. (2013). (b) Each subplot shows one demixed principal component. In each subplot there are ten

lines corresponding to ten conditions (see legend). Six out of these ten conditions were rewarded and are shown with thick lines; note that the pure left

(red) and the pure right (blue) odors did not have error trials. Inset shows mean rate of the second interaction component during the anticipation

period. (c) Cumulative variance explained by PCA and dPCA components. (d) Explained variance of the individual demixed principal components. Pie

chart shows how the total signal variance is split between parameters. (e) Upper-right triangle shows dot products between all pairs of the first 15

demixed principal axes, bottom-left triangle shows correlations between all pairs of the first 15 demixed principal components.

DOI: 10.7554/eLife.10989.009
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stimulus tuning, demonstrating that even in error trials there is reliable information about stimulus

identity in the population activity.

Curiously, the first interaction component (#4) already shows significant tuning to reward in the

anticipation period. In other words, neurons tuned to presence/absence of reward start firing before

the reward delivery (or, on error trials, before the reward could have been delivered). We return to

this observation in the next section.

Olfactory categorization task in rat OFC
Kepecs et al. (2008) extended the experiment of Feierstein et al. (2006) by using odor mixtures

instead of pure odors, thereby varying the difficulty of each trial (Uchida and Mainen, 2003). In each

trial, rats experienced mixtures of two fixed odors with different proportions (Figure 6a). Left

choices were rewarded if the proportion of the ’left’ odor was above 50%, and right choices other-

wise. Furthermore, the waiting time until reward delivery (anticipation period) was increased to 0.3–

2 s.

We analyzed the activity of 214 OFC neurons from three rats recorded in 8 conditions, corre-

sponding to four odor mixtures, each paired with two decisions (left and right). During the presenta-

tion of pure odors (100% right and 100% left) rats made essentially no mistakes, and so we excluded

these data from the dPCA computations (which require that all parameter combinations are present,

see Discussion). Nevertheless, we displayed these additional two conditions in Figure 6.

The dPCA components shown in Figure 6b are similar to those presented in Figure 5b. Here

again, some of the interaction components (especially the second one, #5) show strong tuning

already during the anticipation period, i.e. before the actual reward delivery. The inset in Figure 6b

shows the mean value of the component #5 during the anticipation period, separating correct

(green) and incorrect (red) trials for each stimulus. The characteristic U-shape for the error trials and

the inverted U-shape for the correct trials agrees well with the predicted value of the rat’s uncer-

tainty in each condition (Kepecs et al., 2008). Accordingly, this component can be interpreted as

corresponding to the rat’s uncertainty or confidence about its own choice, confirming the results of

Kepecs et al. (2008). In summary, both the main features of this dataset, as well as some of the sub-

tleties, are picked up and reproduced by dPCA.

Universal features of the PFC population activity
One of the key advantages of applying dPCA to these four datasets is that we can now compare

them far more easily than was previously possible. This comparison allows us to highlight several

general features of the population activity in prefrontal areas.

First, most of the variance of the neural activity is always captured by the condition-independent

components that together amount to 65–90% of the signal variance (see pie charts in Figures 3–

6d; see Materials and methods for definition of ’signal variance’). These components capture the

temporal modulations of the neural activity throughout the trial, irrespective of the task condition.

Their striking dominance in the data may come as a surprise, as such condition-independent compo-

nents are usually not analyzed or shown (cf. Figure 1e,h), even though condition-independent firing

has been described even in sensory areas (Sornborger et al., 2005). These components are likely

explained in part by an overall firing rate increase during certain task periods (e.g. during stimulus

presentation). More speculatively, they could also be influenced by residual sensory or motor varia-

bles that vary rhythmically with the task, but are not controlled or monitored (Renart and Machens,

2014). The attentional or motivational state of animals, for instance, often correlates with breathing

(Huijbers et al., 2014), pupil dilation (Eldar et al., 2013), body movements (Gouvêa et al., 2014),

etc.

Second, even though dPCA, unlike PCA, does not enforce orthogonality between encoding axes

corresponding to different task parameters, most of them turned out to be close to orthogonal to

each other (Figures 3–6e, upper triangle), as has been observed before (Brendel et al., 2011;

Rishel et al., 2013; Raposo et al., 2014). Nevertheless, many pairs were significantly non-orthogo-

nal, meaning that neurons expressing one of the components tended to also express the other one.

Throughout the four datasets, we identified 277 pairs of axes (among the first 15 axes) correspond-

ing to different parameters. Of these, 38, i.e. 14%, were significantly non-orthogonal with p<0:001 (8

out of 53 if we do not take time axes into account).
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Third, all dPCA components in each of the datasets are distributed across the whole neural popu-

lation (as opposed to being exhibited only by a subset of cells). For each component and each neu-

ron, the corresponding encoder weight shows how much this particular component is exhibited by

this particular neuron. For each component, the distribution of weights is strongly unimodal, centred

at zero (Figure 7a), and rather symmetric (although it is skewed to one side for some components).

In other words, there are no distinct sub-populations of neurons predominantly expressing a particu-

lar component; rather, each individual neuron can be visualized as a random linear combination of

these components. We confirmed this observation by applying a recently developed clustering algo-

rithm (Rodriguez and Laio, 2014) to the population of neurons in the 15-dimensional space of dPC

weights. In all cases, the algorithm found only one cluster (Figure 7b). An alternative clustering anal-

ysis with Gaussian mixture models yielded similar results (data not shown). This absence of any

detectable clusters of neurons has been noted before (Machens et al., 2010) and was recently

observed in other datasets as well (Raposo et al., 2014).

Discussion
Mixed selectivity of neurons in higher cortical areas has been increasingly recognized as a problem

for the analysis of neurophysiological recordings, with many different approaches suggested to deal

with it (Brody et al., 2003; Machens et al., 2010; Machens, 2010; Brendel et al., 2011;

Rigotti et al., 2013; Pagan and Rust, 2014; Park et al., 2014; Raposo et al., 2014;

Cunningham and Yu, 2014). The main strength and the main novelty of the method suggested here

(dPCA) is that it offers a unified and principled way of analyzing such data.

Demixed PCA combines the strengths of existing supervised and unsupervised approaches to

neural population data analysis (Table 1, see also the first section of the Results). Supervised

Figure 7. Encoder weights for the leading dPCA components across the neural population. (a) Distributions of encoder weights for the 15 leading

dPCA components across the neural population, in each of the four datasets. Each subplot shows 15 probability density curves, one curve per

component (bin width 0.005). The distribution corresponding to the first component is highlighted in red. (b) Clustering of neurons by density peaks

(Rodriguez and Laio, 2014). For each dataset we took the first 15 dPCA components, and then ran the clustering algorithm in the 15-dimensional

space of encoding weights. The clustering algorithm works in two steps: first, it computes a local density for each point (i.e., for each neuron), using a

Gaussian kernel with s2 ¼ 0:01. Second, for each point it finds the minimal distance to a point with higher local density (if there is no such point, then

the distance to the furthest point is taken). Each subplot shows local density on the horizontal axis plotted against distance to the next point with

higher density on the vertical axis; each dot corresponds to one of the N neurons. Cluster centres are characterized by high local density and large

distance to the point of even higher density; they should appear as outliers in the upper-right corner of the plot (see Rodriguez and Laio, 2014, for

details). In each case, there is only one such outlier (bigger dot), indicating a single cluster.

DOI: 10.7554/eLife.10989.010
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methods can characterize population tuning to various parameters of interest but often do not faith-

fully represent the whole dataset. Unsupervised methods can capture the overall variance but are

not informed by task parameters. Our method yields components that capture almost as much vari-

ance as PCA does, but are demixed.

We view both properties as equally important. On one hand, demixing can greatly simplify visuali-

zation and interpretation of neural population data. Indeed, in all cases presented here, all the major

aspects of the population activity that had previously been reported are directly visible on the dPCA

summary figure. On the other hand, faithful representation of the population activity (i.e. ’capturing

variance’) avoids that a particular interpretation distorts characteristic features of the data. The latter

feature is particularly important for the development of theoretical models, which otherwise may

inherit an interpretation bias without being aware of it.

Apart from being a useful tool for analyzing any particular dataset, dPCA highlights common fea-

tures of neural activity when applied to several datasets, allowing to adopt a comparative approach

to study population activity.

Relationship to other methods, including our earlier work
The method presented here is conceptually based on our previous work (Machens, 2010;

Machens et al., 2010; Brendel et al., 2011), but is technically very different. The original approach

from Machens et al. (2010) only works for two parameters of interest, such as time and stimulus.

Machens (2010) suggested a partial generalization to multiple parameters and Brendel et al.

(2011) introduced the full covariance decomposition and developed a probabilistic model. However,

all of them imposed orthogonality on the decoder/encoder axes (and as a result did not distinguish

them), a constraint that cannot be easily relaxed. While we have previously argued that orthogonality

is a desirable feature of the decomposition, we now believe that it is better not to impose it upfront.

First, by looking across many datasets, we have learnt that encoding subspaces can sometimes be

highly non-orthogonal (Figures 3–6e) and hence not demixable under orthogonality constraints.

Second, by not imposing orthogonality, we can easier identify components that are truly orthogonal.

Third, removing the orthogonality constraint allowed us to obtain a simple analytical solution in

terms of singular value decompositions (see Materials and methods) and hence to avoid local min-

ima, convergence issues, and any additional optimization-related hyperparameters.

To demonstrate these advantages, we ran the algorithm of Brendel et al. (2011), dPCA-2011, on

all our datasets. The resulting components were similar to the components presented here, with the

amount of variance captured by the first 15 components being very close; but the achieved demixing

was worse. For each component we defined a demixing index (see Materials and methods) that is

equal to 1 if the component is perfectly demixed. For all datasets, these indices were significantly

Table 1. Demixed PCA in comparison with existing methods. Columns: ’Signif.’ refers to the method of counting significantly tuned

cells, as shown in Figure 1c–e. TDR refers to the ’targeted dimensionality reduction’ of Mante et al. (2013) shown in Figure 1f–h.

LDA stands for linear discriminant analysis, but this column applies to any classification method (e.g. support vector machine, ordinal

logistic regression, etc.). All classification methods can be used to summarize population tuning via a time-dependent classification

accuracy (e.g. Meyers et al., 2012). PCA stands for principal component analysis, as shown in Figure 1i–k. FA stands for factor

analysis, GPFA for Gaussian process factor analysis (Yu et al., 2009), LDS for hidden linear dynamical system (Buesing et al., 2012a;

2012b), jPCA is the method introduced in Churchland et al. (2012) . Some of the existing methods can be extended to become

more general, but here we refer to how these methods are actually used in the original research. Rows: The first two rows are the two

defining goals of dPCA. Following rows highlight notable features of other methods.

Signif. TDR LDA PCA FA GPFA jPCA LDS dPCA

Takes task parameters into account & provides summary statistics of population tuning [ [ [ [

Allows to reconstruct neural firing (captures variance) [ [ [ [ [

Based on dynamical model [ [

Based on probabilistic model [ [ [

Takes spike trains as input [ [
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higher with our current dPCA-2015 method than with dPCA-2011. Moreover, dPCA-2011 failed to

find some weak components at all. For comparison, see Figure 14 in the Materials and methods.

Another method, called ’targeted dimensionality reduction’ (TDR) has recently been suggested

for neural data analysis and is similar in spirit to dPCA in that it looks for demixing linear projections

(Mante et al., 2013). As mentioned above, the original application of this method yields only one

component per task parameter and ignores the condition-independent components. While TDR can

be extended in various ways to yield more components, no principled way of doing it has been sug-

gested so far. Comparison of dPCA with TDR on our datasets shows that dPCA demixes the task-

parameter dependencies better than TDR (see Figure 14 in the Materials and methods).

For an in-depth discussion of the relationship between dPCA and LDA/MANOVA, we refer the

reader to the Methods. Briefly, LDA is a one-way technique, meaning that only one parameter (class

id) is associated with each data point. Therefore, LDA cannot directly be applied to the demixing

problem. While LDA could be generalized to deal with several parameters in a systematic way, such

a generalization has not been used for dimensionality reduction of neural data and does not have an

established name in the statistical literature (we call it factorial LDA). We believe that for the pur-

poses of dimensionality reduction, dPCA is a superior approach since it combines a reasonably high

class separation with low reconstruction error, whereas LDA only optimizes class separation without

taking the (potential) reconstruction error into account (see Figure 2). MANOVA, on the other hand,

is a statistical test closely related to LDA that deals with multiple parameters. However, it deals with

isolating the contribution of each parameter from residual noise rather than from the other parame-

ters, and is therefore not suited for demixing.

Limitations and future work
While we believe that dPCA is an easy-to-use method of visualizing complex data sets with multiple

task parameters, several limitations should be kept in mind. First, dPCA as presented here works

only with discrete parameters, and all possible parameter combinations must be present in the data.

This limitation is the downside of the large flexibility of the method: apart from the demixing con-

straint, we do not impose any other constraints on the latent variables and their estimation remains

essentially non-parametric. In order to be able to treat continuous parameters or missing data (miss-

ing parameter combinations), we would need to further constrain the estimation of these latent vari-

ables, using e.g. a parametric model. One simple possibility is to directly use a parametric model for

the activity of the single neurons, such as the linear model used in Mante et al. (2013), in order to

fill in any missing data points, and then run dPCA subsequently.

Second, the number of neurons needs to be sufficiently high in order to obtain reliable estimates

of the demixed components. In our datasets, we found that at least ~ 100 neurons were needed to

achieve satisfactory demixing. The number is likely to be higher if more than three task parameters

are to be demixed, as the number of interaction terms grows exponentially with the number of

parameters. This trade-off between model complexity and demixing feasibility should be kept in

mind when deciding how many parameters to put into the dPCA procedure. In cases when there are

many task parameters of interest, dPCA is likely to be less useful than the more standard parametric

single-unit approaches (such as linear regression). As a trivial example, imagine that only N ¼ 1 neu-

ron has been recorded; it might have strong and significant tuning to various parameters of interest,

but there is no way to demix (or decode) these parameters from the recorded ’population.’

Third, even with a large number of neurons, a dataset may be non-demixable, in which case

dPCA would fail. For instance, if the high-variance directions of the stimulus and the decision parts

of the neural activities fully overlap, then there is no linear decoder that can demix the two

parameters.

Finally, dPCA components corresponding to the same parameter (e.g. successive stimulus com-

ponents) are here chosen to be orthogonal, similarly to PCA. This can make successive components

difficult to interpret (e.g. the second and the third stimulus components in Figure 3). To make them

more interpretable, the orthogonality constraint could be replaced with some other constraints, such

as e.g. requiring each component to have activity ’localized’ in time. This problem may be addressed

in future work.
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Materials and methods
We will first explain the dPCA algorithm in the most well-behaved case of simultaneously recorded

and fully balanced data. A dataset with categorical predictors is called balanced when there is the

same number of data points for each combination of predictors; in our case this means that there is

the same number of trials for each combination of task parameters. This scenario is unlikely in most

practical applications where the experimenter often does not have full control over some of the task

parameters (such as e.g. animal’s decisions). Our suggestion for unbalanced datasets is to use what

amounts to a ’re-balancing’ procedure as explained below. Finally, we will deal with the case of

sequentially recorded neurons (all datasets analyzed in this manuscript fall into this category).

Mathematical notation
In each of the datasets analyzed in this manuscript, trials can be labeled with two parameters: ’stimu-

lus’ and ’decision’. Note that a ’reward’ label is not needed, because its value can be deduced from

the other two due to the deterministic reward protocols in all tasks. In this situation, for each stimu-

lus s (out of S) and decision d (out of Q), we have a collection of K trials with N neurons recorded in

each trial. For each trial k (out of K) and neuron n (out of N) we have a recorded spike train. We

denote the filtered (or binned) spike train by xðtÞ, and assume that it is sampled at T time points t.

To explicitly denote all task parameters, we will write either xðt; s; d; kÞ or xtsdk for the filtered spike

train of one neuron and xtsdk for the vector of filtered spike trains of all N neurons. The latter notation

is more compact and also highlights the tensorial character of the data.

These data can be thought of as KSQ time-dependent neural trajectories (K trials for each of the

SQ conditions) in the N-dimensional space RN (Figure 2b). The number of distinct data points in this

N-dimensional space is KSQT. We collect the full data with all single trials in a matrix X of size

N � KSQT , i.e. N rows and KSQT columns. Averaging all K trials for each neuron, stimulus, and deci-

sion, yields mean firing rates (PSTHs) that can be collected in a smaller matrix eX of size N � SQT.

Marginalization procedure
Consider one single neuron first. We can decompose its filtered spike trains, xtsdk, into a set of aver-

ages (which we call marginalizations) over various combinations of parameters. We will denote the

average over a set of parameters fa; b; . . .g by angular brackets h�iab.... Let us define the following

marginalized averages:

�x ¼ hxtsdkitsdk ¼ �x����
�xt ¼ hxtsdk ��xisdk ¼ �xt�����x����
�xs ¼ hxtsdk ��xitdk ¼ �x�s����x����
�xd ¼ hxtsdk ��xitsk ¼ �x��d���x����
�xts ¼ hxtsdk ��x��xt ��xs��xdidk ¼ �xts����xt��� ��x�s��þ�x����
�xtd ¼ hxtsdk ��x��xt ��xs��xdisk ¼ �xt�d� ��xt�����x��d� þ�x����
�xsd ¼ hxtsdk ��x��xt ��xs��xditk ¼ �x�sd���x�s�� ��x��d�þ�x����
�xtsd ¼ hxtsdk ��x��xt ��xs��xd ��xts��xtd ��xsdik ¼ �xtsd���xts�� ��x�sd���xt�d�

þ�xt���þ�x�s��þ�x��d� ��x����
�tsdk ¼ xtsdk �hxtsdkik ¼ xtsdk ��xtsd�:

Here �x is simply the overall mean firing rate of our neuron, �xt is the average time-varying firing rate

once the overall mean has been subtracted, etc. The right-hand side shows the same averaging pro-

cedure in the more explicit form using ANOVA-style notation, in which averages of x over everything

apart from the explicitly mentioned parameters, e.g., the stimulus s, are denoted by terms of the

form �x�s��. One can directly see that the original neural activities are given by the sum of all

marginalizations:

xtsdk ¼ �xþ�xt þ�xsþ�xd þ�xtsþ�xtd þ�xds þ�xtsd þ �tsdk:

This decomposition is identical to the one used in factorial ANOVA (Rutherford, 2001; Christen-

sen, 2011) where task parameters are called factors. The ANOVA literature uses a slightly different

notation with task parameters (t; s; d; k) replaced by indices (i; j; k; l) and with Greek letters designat-

ing individual terms:
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xijkl ¼ �þai þbj þgk þ dijþ zjk þhik þ �ijk þ �ijkl:

We will use our notation, though, to keep the connection with the task parameters more explicit.

For the purposes of demixing neural signals in the context of our datasets, we combine some of

these terms together. Indeed, demixing a time-independent pure stimulus term �xs from a stimulus-

time interaction term �xts makes little sense because we expect all neural components to change with

time. Hence, we group the terms as follows (without changing the notation):

xtsdk ¼ �xþ�xt þ�xsþ�xts|fflfflffl{zfflfflffl}
�xts

þ�xd þ�xtd|fflfflffl{zfflfflffl}
�xtd

þ�xsd þ�xtsd|fflfflfflfflffl{zfflfflfflfflffl}
�xtsd

þ �tsdk:

Here the first term on the right-hand side is the mean firing rate, the last term is the trial-to-trial

noise, and we call the other terms condition-independent term, stimulus term, decision term, and

stimulus-decision interaction term. This decomposition is illustrated in Figure 8 for several exemplary

neurons (we only show the decomposition of the PSTH part, leaving out the noise term).

We apply this marginalization procedure to every neuron, splitting the whole data matrix X into

parts. Assuming from now on that the data matrix is centered (i.e. �x ¼ 0 for all neurons), we can write

the decomposition in the matrix form

X¼Xt þXtsþXtd þXtsd þXnoise ¼
X

f

XfþXnoise:

Here t, ts, td, and tsd are labels and not indices, and all terms are understood to be matrices of the

same N�KSQT size, so e.g. Xt is not an N�T sized matrix, but the full size N�KSQT matrix with

N�T unique values replicated KSQ times. Crucially, the marginalization procedure ensures that all

terms are uncorrelated and that the N�N covariance matrix C¼XX>=ðKSQTÞ is linearly decom-

posed into the sum of covariance matrices from each marginalization (see Appendix A for the

proof):

C¼Ct þCtsþCtd þCtsd þCnoise ¼
X

f

CfþCnoise:

Here all covariance matrices are defined with the same denominator, i.e. Cf ¼XfX
>
f=ðKSQTÞ.

Core dPCA: loss function and algorithm
Given a decomposition X ¼

P
f Xf þXnoise, the loss function of dPCA is given by

Figure 8. Marginalization procedure. PSTHs of three exemplary neurons from the somatosensory working memory task decomposed into

marginalizations.

DOI: 10.7554/eLife.10989.012
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L¼
X

f

Lf

with

Lf ¼ kXf�FfDfXk2;

where each Ff is an encoder matrix with qf columns and each Df is a decoder matrix with qf rows.

Here and below, matrix norm signifies Frobenius norm, i.e. kXk2 ¼
P

i

P
jX

2
ij. In the remaining discus-

sion, it will often be sufficient to focus on the individual loss functions Lf, in which case we will drop

the indices f on the decoder and encoder matrices for notational convenience, and simply write F

and D.

Without any additional constraints, the decoder and encoder are only defined up to their product

FD of rank q. To make the decomposition unique, we will assume that F has orthonormal columns

and that components are ordered such that their variance (row variance of DX) is decreasing. The

reason for this choice will become clear below.

This loss function penalizes the difference between the marginalized data Xf and the recon-

structed full data X, i.e., the full data projected with the decoders D onto a low-dimensional latent

space and then reconstructed with the encoders F (see Video 2). The loss function thereby favours

variance in marginalization f and punishes variance coming from all other marginalizations and from

trial-to-trial noise. Given that the marginalized averages are uncorrelated with each other, we can

make this observation clear by writing,

Lf ¼ kXf�FDXk2 ¼ kXf�FDXfk
2þkFDðX�XfÞk

2:

Here the first term corresponds to the non-explained variance in marginalization f and the second

term corresponds to the variance coming from all other marginalizations and from trial-to-trial noise.

The dPCA objective is to minimize both.

We note that the loss function Lf is of the general form kXf �AXk2, with A ¼ FD. For an

arbitrary N � N matrix A, minimization of the loss function amounts to a classical regression

problem with the well-known ordinary least squares (OLS) solution, AOLS ¼ XfX
>ðXX>Þ�1. In our

case, A ¼ FD is an N � N matrix of rank q, which we will make explicit by writing Aq. The dPCA

loss function therefore amounts to a linear regression problem with an additional rank constraint

on the matrix of regression coefficients. This problem is known as reduced-rank regression (RRR)

(Izenman, 1975; Reinsel and Velu, 1998; Izenman, 2008) and can be solved via the singular

value decomposition.

To see this, we write Xf �AqX ¼ ðXf �AOLSXÞ þ ðAOLSX�AqXÞ. The first term, Xf �AOLSX,

consists of the regression residuals that cannot be accounted for by any linear transformation of X.

It is straightforward to verify that these regression residuals, Xf �AOLSX, are orthogonal to

X (Hastie et al., 2009, Section 3.2) and hence also orthogonal to ðAOLS �AqÞX. This orthogonality

allows us to split the loss function into two terms,

kXf�AqXk2 ¼ kXf�AOLSXk2 þkAOLSX�AqXk2;

where the first term captures the (unavoidable) error of the least squares fit while the second term

describes the additional loss suffered through the rank constraint. Since the first term does not

depend on Aq, the problem reduces to minimizing the second term.

To minimize the second term, we note that the best rank-q approximation to AOLSX is given by

its first q principal components (Eckart-Young-Mirsky theorem). Accordingly, if we write Uq for the

matrix of the q leading principal directions (left singular vectors) ui of AOLSX, then the best approxi-

mation is given by UqU
>
q AOLSX and hence Aq ¼ UqU

>
q AOLS.

To summarize, the reduced-rank regression problem posed above can be solved in a three-step

procedure:

1. Compute the OLS solution AOLS ¼ XfX
>ðXX>Þ�1.
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2. Perform PCA of AOLSX and take the q

leading principal components to obtain

the best low-rank approximation: Aq ¼

UqU
>
q AOLS where Uq is the N � q matrix

of the q leading principal directions (left
singular vectors) of AOLSX.

3. Factorize the matrix Aq into decoder and

encoder matrices, Aq ¼ FD, by choosing

F ¼ Uq and D ¼ U>
q AOLS.

Conveniently, the extracted decoder/encoder

pairs do not depend on how many pairs are

extracted: the i-th pair is given by f ¼ ui and

d ¼ u>
i AOLS, independent of q. Indeed, this fea-

ture motivated the above choice that F should

have orthonormal columns.

Regularization
A standard way to avoid overfitting in regression problems is to add a quadratic penalty to the cost

function, which is often called ridge regression (RR). This approach can be used in reduced-rank

regression as well. Specifically, we can add a ridge penalty term to the loss function Lf:

Lf ¼ kXf�FDXk2þ�kFDk2:

The RR solution modifies the OLS solution from above to

ARR ¼XfX
>
�
XX> þ�I

��1
:

In turn, the reduced-rank solution can be obtained as described above: F¼Uq and D¼U>
q ARR

where Uq are the first q principal directions of ARRX.

We found it convenient to define � ¼ ðlkXkÞ2, since this makes the values of l comparable across

datasets. As explained below, we used cross-validation to select the optimal value of l in each

dataset.

Unbalanced data
The data and variance decomposition carried out by the marginalization procedure can break down

when the dataset is unbalanced, i.e., when the number of data points (trials) differs between

Video 2. Illustration of the dPCA algorithm. Illustration

of the dPCA algorithm using the somatosensory

working memory task.

DOI: 10.7554/eLife.10989.013

Figure 9. Balanced and unbalanced data. (a) In this toy example there are two task parameters (factors), with two possible values each. Parameter A

(left) is represented by the size of the dot, parameter B (middle) is represented by the color of the dot, noise is Gaussian with zero mean and zero

correlation (right). Interaction term is equal to zero. (b) Balanced case with N ¼ 10 data points in each of the four parameter combinations. Overall

correlation is zero. (c) Unbalanced case with N ¼ 10 for two parameter combinations and N ¼ 100 for the other two. Overall correlation is 0.8.

DOI: 10.7554/eLife.10989.014
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conditions. We illustrate this problem with a two-dimensional toy example in Figure 9. We assume

two task parameters (factors), each of which can take only two possible values. The overall mean as

well as the interaction term are taken to be zero, so that xijk ¼ ai þ bj þ eijk. Since the number of tri-

als, K ¼ Kij, depends on the condition, the trial index runs through the values k ¼ 1 . . .Kij. As shown

in Figure 9a, all three terms on the right-hand side exhibit zero correlation between x1 and x2. A bal-

anced dataset with the same number of data points in each of the four possible conditions

(Figure 9b) also has zero correlation. However, an unbalanced dataset, as shown in Figure 9c, exhib-

its strong positive correlation (� ¼ 0:8). Accordingly, the covariance matrix of the full data can no lon-

ger be split into marginalized covariances. To avoid this and other related problems, we can

perform a ’re-balancing’ procedure by reformulating dPCA in terms of PSTHs and noise covariance.

In the balanced case, the dPCA loss function Lf can be rewritten as the sum of two terms with

one term depending on the PSTHs and another term depending on the trial-to-trial variations,

Lf ¼ kXf�FDXk2 ¼ kXf�FDðX�XnoiseÞk
2 þkFDXnoisek

2;

where we used the fact that Xf and X�Xnoise are orthogonal to Xnoise (see Appendix A). We now

define XPSTH ¼X�Xnoise which is simply a matrix of the same size as X with the activity of each trial

replaced by the corresponding PSTH. In addition, we observe that the squared norm of any centered

data matrix Y with n data points can be written in terms of its covariance matrix CY ¼YY>=n,

namely kYk2 ¼ tr½YY>� ¼ n tr½CY � ¼ ntr½C1=2
Y C

1=2
Y � ¼ nkC1=2

Y k2, and so

Lf ¼ kXf�FDXPSTHk
2þKSQT kFDC

1=2
noisek

2:

The first term consists of K replicated copies: XPSTH contains K replicated copies of eX (which we

defined above as the matrix of PSTHs) and Xf contains K replicated copies of eXf (which we take to

be a marginalization of eX, with eX¼
P

f
eXf). We can eliminate the replications and drop the factor K

to obtain

Lf ¼ keXf�FDeXk2þ SQT kFDC
1=2
noisek

2:

In the unbalanced case, we can directly use this last formulation where all occurrences of X have

been replaced by eX. This is especially useful for neural data, where some combinations of task

parameters may occur more often than others. The ’re-balanced’ dPCA loss function treats all

parameter combinations as equally important, independent of their occurrence frequency. It stands

to reason to ’re-balance’ the noise covariance matrix as well by defining it as follows:

eCnoise ¼
1

SQT

X

sdt

Cnoiseðs;d; tÞ ¼


Cnoiseðs;d; tÞ

�
sdt
;

where Cnoiseðs;d; tÞ is the covariance matrix for the ðs;d; tÞ parameter combination. This formulation,

again, treats noise covariance matrices from different parameter combinations as equally important,

independent of how many data points there are for each parameter combination.

Putting everything together and including the regularization term as well, we arrive at the follow-

ing form of the dPCA loss function:

Lf ¼ keXf�FDeXk2 þ SQT kFDeC1=2
noisek

2 þ�kFDk2:

This loss function can be minimized as described in the previous section. Specifically, the full rank

solution with A¼FD becomes

ARR ¼ eXf
eX>

� eXeX>þ SQT � eCnoise þ�I
��1

:

The reduced-rank solution can then be obtained by setting F¼Uq and D¼U>
q A, where Uq are the

first q principal directions of ARR
eX.
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Missing data
Even when using the re-balanced formulation of the loss function, we still need data from all possible

parameter combinations. In neurophysiological experiments, however, one may run into situations

where not all combinations of stimuli could be presented to an animal before it decided to abort the

task, or where an animal never carried out a particular decision, etc. This problem is particularly

severe if individual task parameters can take many values. What should one do in these cases? The

key problem here is that dPCA as formulated above makes no assumptions about how the firing

rates of individual neurons depend on the task parameters. (Nor is there an explicit assumption

about how the demixed components depend on the task parameters.) If some task conditions have

not been recorded, then the only way out is to add more assumptions, or, more formally, to replace

the non-parametric estimates of individual neural firing rates (or demixed components) by paramet-

ric estimates. We could for instance fit a simple linear model to the firing rate of each neuron at

each time step (Mante et al., 2013; Brody et al., 2003),

xðt; s;dÞ ¼ aðtÞþbðtÞsþgðtÞdþ �

and then use this model to ’fill in’ the missing data. More sophisticated ways of dealing with missing

data could be envisaged as well and may provide a venue for future research.

Sequentially recorded data
For sequentially recorded datasets, the matrix X cannot be meaningfully constructed. However, we

can still work with the PSTH matrix eX that can be decomposed into marginalizations: eX ¼
P

f
eXf.

Consequently, we can use the same formulation of the loss function as in the simultaneously

recorded unbalanced case (see above). The only difference is that the noise covariance matrix is not

available (noise correlations cannot be estimated when neurons are recorded in different sessions).

In this manuscript we took as Cnoise the diagonal matrix with individual noise variances of each neu-

ron on the diagonal. We used the re-balanced version eCnoise (average noise covariance matrix across

all conditions), but found that the difference between re-balanced and non-rebalanced noise covari-

ance matrices was always minor and did not noticeably influence the dPCA solutions.

Variance calculations
As all datasets analyzed in this manuscript were sequentially recorded, we always reported fractions

of the PSTH variance (as opposed to the total PSTH+noise variance) explained by our components,

i.e. fractions of variance explained in eX. We defined the fraction of explained variance in a standard

way:

R2 ¼
keXk2 �keX�FDeXk2

keXk2
:

This formula can be used to compute the fraction of variance explained by each dPCA compo-

nent (by plugging in its encoder f and decoder d); these are the numbers reported on Figures 3–

6b,d and used to order the components. The same formula can be used to compute the cumulative

fraction of variance explained by the first q components (by stacking their encoders and decoders as

columns and rows of F and D respectively); these are the numbers reported on Figures 3–6c. Note

that the cumulative explained variance is close to the sum of individually explained variances but not

exactly equal to it since the dPCA components are not completely uncorrelated. The same formula

holds for standard PCA using F¼D> ¼Upca, i.e., the matrix of stacked together principal directions

(Figures 3–6c).

Using the decomposition eX ¼
P

f
eXf, we can split the fraction of explained variance into additive

contributions from different marginalizations:

R2 ¼
X

f

keXfk
2 �keXf�FDeXfk

2

keXk2
:

We used this decomposition to produce the bar plots in Figures 3–6d, showing how the explained

variance of each single dPCA component is split between marginalizations.
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Following the approach of Machens et al. (2010), we note that our PSTH estimates eX must differ

from the ’true’ underlying PSTHs due to the finite amount of recorded trials. Hence, some fraction of

the total variance of eX is coming from this residual noise. We can estimate this fraction as follows.

Our estimate of the noise variance of the n-th neuron is given by eCnn, the n-th diagonal element of

eCnoise. There are on average eKn ¼
1
SQ

P
Knsd trials being averaged to compute the PSTHs for this neu-

ron. So a reasonable estimate of the residual noise variance of the n-th neuron is eCnn=eKn. Accord-

ingly, we define the total residual noise sum of squares as

Q¼ SQT �
X

n

eCnn

eKn

:

In turn, the fraction of total signal variance is computed as 1�Q=keXk2 which is the dashed line

shown in Figures 3–6c. Note that each component likewise has contributions from both signal and

noise variance, and hence the fraction of total signal variance does not constitute an upper bound

on the number of components.

The residual noise variance is not split uniformly across marginalizations: the fraction falling into

marginalization f is proportional to the respective number of degrees of freedom, Kf. This can be

explicitly computed; for a centered dataset with S stimuli, Q decisions, and T time points the total

number of degrees of freedom (per neuron) is SQT � 1 and is split into T � 1 for time, ST � T for

stimulus, QT � T for decision, and SQT � ST � QT þ T for the stimulus-decision interaction (compare

with the formulas in the Marginalization Procedure section). Accordingly, we computed the residual

noise sum of squares falling into marginalization f as

Qf ¼
Kf

SQT � 1
Q:

The pie charts in Figures 3–6d show the amount of variance in each marginalization, with esti-

mated contributions of the residual noise variance subtracted:
�
keXfk

2 �Qf

���
keXk2 �Q

�
. To display

the percentage values on the pie charts, percentages were rounded using the ’largest remainder

method’, so that the sum of the rounded values remained 100%.

Demixing indices
We defined the demixing index of each component as maxffkdeXfk

2g=kdeXk2. This index can range

from 1/4 to 1 (since there are four marginalizations) and the closer it is to 1, the better demixed the

component is. As an example, for the somatosensory working memory dataset, the average demix-

ing index over the first 15 PCA components is 0.76�0.16 (mean�SD), and over the first 15 dPCA

components is 0.98�0.02, which means that dPCA achieves much better demixing (p ¼ 0:0002,

Mann-Whitney-Wilcoxon ranksum test). For the first 15 components of dPCA-2011 (Brendel et al.,

2011) it was 0.95�0.03, significantly less than for the current dPCA (p ¼ 0:0008). This difference may

seem small, but is clearly visible in the projections by the naked eye. For comparison, the average

demixing index of individual neurons in this dataset is 0.55�0.18. In other datasets these numbers

are similar, and the same differences were significant in all cases.

Angles between dPCs
In Figures 3–6e, stars mark the pairs of components whose encoding axes f 1 and f 2 are significantly

and robustly non-orthogonal. These were identified as follows: In Euclidean space of N dimensions,

two random unit vectors (from a uniform distribution on the unit sphere) have dot product (cosine of

the angle between them) distributed with mean zero and standard deviation N�1=2. For large N the

distribution is approximately Gaussian. To avoid the problems inherent to multiple comparisons, we

chose a conservative significance level of p<0:001, which means that two axes are significantly non-

orthogonal if jf 1 � f 2j> 3:3=N1=2.

Coordinates of f 1 quantify how much this component contributes to the activity of each neuron.

Hence, if cells exhibiting one component also tend to exhibit another, the dot product between the

axes f1 � f2 > 0 is positive (note that f 1 � f 2 is approximately equal to the correlation between the

coordinates of f 1 and f 2). Sometimes, however, the dot product has large absolute value only due to

Kobak et al. eLife 2016;5:e10989. DOI: 10.7554/eLife.10989 23 of 36

Research Article Neuroscience

http://dx.doi.org/10.7554/eLife.10989


several outlying cells. To ease interpretation, we marked with stars only those pairs of axes for which

the Kendall (robust) correlation was significant at p<0:001 level (in addition to the above criterion on

f 1 � f2).

Experimental data
Brief descriptions of experimental paradigms are provided in the Results section and readers are

referred to the original publications for all further details. Here we describe the selection of animals,

sessions, and trials for the present manuscript. In all experiments neural recordings were obtained in

multiple sessions, so most of the neurons were not recorded simultaneously. All four datasets used

in this manuscript have been made available at http://crcns.org (Romo et al., 2016;

Constantinidis et al., 2016; Feierstein et al., 2016; Uchida et al., 2016).

1. Somatosensory working memory task in monkeys (Romo et al., 1999; Brody et al., 2003). We
used data from two monkeys (code names RR14 and RR15) that were trained with the same
set of vibratory frequencies, and we selected only the sessions where all six frequencies {10,
14, 18, 26, 30, 34} Hz were used for the first stimulation (other sessions were excluded). Mon-
keys made few mistakes (overall error rate was 6%), and here we analyzed only correct trials.
Monkey RR15 had an additional 3 s delay after the end of the second stimulation before it was
cued to provide the response. Using the data from monkey RR13 (that experienced a different
frequency set) led to very similar dPCA components (data not shown).

2. Visuospatial working memory task in monkeys (Qi et al., 2011; Meyer et al., 2011; Qi et al.,
2012). We used the data from two monkeys (code names AD and EL) that were trained with
the same spatial task. Monkeys made few mistakes (overall error rate was 8%), and here we
analysed only correct trials. The first visual stimulus was presented at 9 possible spatial loca-
tions arranged in a 3�3 grid (Figure 4a); here we excluded all the trials where the first stimulus
was presented in the centre position.

3. Olfactory discrimination task in rats (Feierstein et al., 2006). We used the data from all five
rats (code names N1, P9, P5, T5, and W1). Some rats were trained with two distinct odors,
some with four, some with six, and one rat experienced mixtures of two fixed odors in varying

Figure 10. Re-stretching (time warping) procedure. We defined several alignment events (such as odour poke in,

odour poke out, etc.) and for each trial found the times ti of these events. After aligning all trials on t1 ¼ 0 (left) we

computed median times Ti for all other events. Then for each trial we re-stretched the firing rate on each interval

½ti; tiþ1� to align it with ½Ti;Tiþ1� (right). After such re-stretching, all events are aligned and the trials corresponding

to one condition can be averaged.
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proportions. In all cases each odor was uniquely associated with one of the two available water
ports (left/right). Following the original analysis (Feierstein et al., 2006), we grouped all odors
associated with the left/right reward together as a ’left/right odor’. For most rats, caproic acid
and 1-hexanol (shown in Figures 5–6a) were used as the left/right odor. We excluded from
the analysis all trials that were aborted by rats before reward delivery (or before waiting 0.2 s
at the reward port for the error trials).

4. Olfactory categorization task in rats (Kepecs et al., 2008). We used the data from all three
rats (code names N1, N48, and N49). Note that recordings from one of the rats (N1) were
included in both this and previous datasets; when we excluded it from either of the datasets,
the results stayed qualitatively the same (data not shown). We excluded from the analysis all
trials that were aborted by rats before reward delivery (or before waiting 0.3 s at the reward
port for the error trials).

Selection of neurons
For our analysis, we only selected neurons which had been recorded in each possible condition

(combination of parameters), which avoids the missing data problems explained above. Additionally,

we required that in each condition there were at least Kmin > 1 trials, to reduce the standard error of

the mean when averaging over trials, and also for cross-validation purposes. The cutoff was set to

Kmin ¼ 5 for both working memory datasets, and to Kmin ¼ 2 for both olfactory datasets (due to less

neurons available).

We have further excluded very few neurons with mean firing rates over 50 Hz, as such neurons

can bias the variance-based analysis. Firing rates above 50 Hz were atypical in all datasets (number

of excluded neurons for each dataset: 5 / 2 / 1 / 0). This exclusion had a minor positive effect on the

components. We did not apply any variance-stabilizing transformations, but if the square-root trans-

formation was applied, the results stayed qualitatively the same (data not shown).

No other pre-selection of neurons was used. This procedure left 832 neurons (230 / 602 for indi-

vidual animals, order as above) in the somatosensory working memory dataset, 956 neurons (182 /

774) in the visuospatial working memory dataset, 437 neurons in the olfactory discrimination dataset

(166 / 30 / 9 / 106 / 126), and 214 neurons in the olfactory categorization dataset (67 / 38 / 109).

Preprocessing of the neural data
The spike trains were filtered with a Gaussian kernel (s ¼ 50 ms) and sampled at 100 Hz to produce

single-trial instantaneous firing rates.

In the visuospatial working memory dataset we identified the preferred location of each neuron

as the location that evoked maximum mean firing rate in the 500 ms time period while the first stim-

ulus was shown. The neural tuning was shown before to have a symmetric bell shape (Qi et al.,

Figure 11. Cross-validation errors depending on the regularization parameter l. Each subplot corresponds to one dataset and shows mean (solid lines)

and min/max (boundaries of shaded regions) of the relative cross-validation errors for ten repetitions. Different colors refer to different marginalizations

(see legend), the minima are marked by dots. Black color shows all marginalizations together, i.e. LCVðlÞ.
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2011; Meyer et al., 2011), with each neuron having its own preferred location. We then re-sorted

the trials (separately for each neuron) such that only five distinct stimuli were left: preferred location,

45˚, 90˚, 135˚, and 180˚ away from the preferred location.

In both olfactory datasets trials were self-paced. Accordingly, trials last different amounts of time,

and firing rates cannot simply be averaged over trials. We used the following time warping (re-

stretching) procedure to equalize the length of all trials and to align several events of interest (Fig-

ure 10) separately in each dataset. We defined five alignment events: odor poke in, odor poke out,

water poke in, reward delivery, and water poke out. First, we aligned all trials on odor poke in

(T1 ¼ 0) and computed median times of the four other events Ti; i ¼ 2 . . . 5 (for the time of reward

delivery, we took the median over all correct trials). Second, we set DT to be the minimal waiting

time between water port entry and reward delivery across the whole experiment (DT ¼ 0:2 s for the

olfactory discrimination task and DT ¼ 0:3 s for the olfactory categorization task). Finally, for each

trial with instantaneous firing rate xðtÞ we set ti; i ¼ 1 . . . 5, to be the times of alignment events on

this particular trial (for error trials we took t4 ¼ t3 þ DT), and stretched xðtÞ along the time axis in a

piecewise-linear manner to align each ti with the corresponding Ti.

We made sure that time warping did not introduce any artifacts by considering an alternative pro-

cedure, where short (�450 ms) time intervals around each ti were cut out of each trial and

concatenated together; this procedure is similar to the pooling of neural data performed in the origi-

nal studies (Feierstein et al., 2006; Kepecs et al., 2008). The dPCA analysis revealed qualitatively

similar components (data not shown).

Cross-validation to select regularization parameter
As noted above, we renormalized the regularization parameter � ¼ ðlkXkÞ2, and then used cross-

validation to find the optimal value of l for each dataset. To separate the data into training and test-

ing sets, we held out one random trial for each neuron in each condition as a set of SQ test ’pseudo-

trials’ Xtest (as the neurons were not recorded simultaneously, we do not have recordings of all N

neurons in any actual trial). Remaining trials were averaged to form a training set of PSTHs eXtrain and

an estimate of the noise covariance matrix eCtrain. Note that Xtest and eXtrain have the same

dimensions.

We then performed dPCA on eXtrain for various values of l between 10�7 and 10�3 (on a logarith-

mic grid). For each l, we selected ten components in each marginalization (i.e. 40 components in

total) to obtain FfðlÞ and DfðlÞ, and computed the normalized reconstruction error LCVðlÞ on the

test set (see below). We repeated this procedure ten times for different train-test splittings and aver-

aged the resulting functions LCVðlÞ. In all cases the average function �LCVðlÞ had a clear minimum

(Figure 11) that we selected as the optimal l. The values of l selected for each dataset were 2:6 �

10�6 / 5:8 � 10�6 / 5:8 � 10�6 / 5:8 � 10�6. We also performed the same procedure in each marginaliza-

tion separately, but in all datasets the optimal values of l were similar across marginalizations (Fig-

ure 11). We therefore chose to use the same value of l for all marginalizations.

Interestingly, for all our datasets minlf�LCVðlÞg was only slightly smaller than �LCVð0Þ, so the regu-

larization term had almost no influence. Presumably, this result stems from our diagonal (and thus

non-singular) noise covariance matrices, and therefore does not necessarily hold for simultaneously

recorded data.

To compute LCVðlÞ, we used Xtest to predict eXtrain:

LCVðlÞ ¼

P
f k

eXtrain;f�FfðlÞDfðlÞXtestk
2

keXtraink
2

:

This is the residual training-set variance not explained by the test data. Note that it would not make

sense to exchange Xtest and eXtrain in this formula: the decoder and encoder are fitted to the training

data, and should only be applied to the test data for the purposes of cross-validation. An alternative

approach, in which we predicted the test data rather than the training data, yielded similar results

(data not shown).
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Cross-validation to measure classification accuracy
We used decoding axis d of each dPC in stimulus, decision, and interaction marginalizations as a lin-

ear classifier to decode stimulus, decision, or condition respectively. Black lines on Figures 3–

6b show time periods of significant classification. A more detailed description follows below.

We used 100 iterations of stratified Monte Carlo leave-group-out cross-validation, where on each

iteration we held out one trial for each neuron in each condition as a set of SQ test ’pseudo-trials’

Xtest and averaged over remaining trials to form a training set eXtrain (see above). After running

dPCA on eXtrain, we used decoding axes of the first three stimulus/decision/interaction dPCs as a lin-

ear classifier to decode stimulus/decision/condition respectively. Consider e.g. the first stimulus

dPC: first, for each stimulus, we computed the mean value of this dPC separately for every time-

point. Then we projected each test trial on the corresponding decoding axis and classified it at each

time-point according to the closest class mean. The proportion of test trials (out of SQ) classified cor-

rectly resulted in a time-dependent classification accuracy, which we averaged over 100 cross-valida-

tion iterations. Note that this is a stratified procedure: even though in reality some conditions have

many fewer trials than others, here we classify exactly the same number of ’pseudo-trials’ per condi-

tion. At the same time, as the coordinates of individual data points in each pseudo-trial are pooled

from different sessions, the influence of noise correlations on the classification accuracies is

neglected, similar to Meyers et al. (2012).

We then used 100 shuffles to compute the distribution of classification accuracies expected by

chance. On each iteration and for each neuron, we shuffled all available trials between conditions,

respecting the number of trials per condition (i.e. all
P

sd Knsd trials were shuffled and then randomly

assigned to the conditions such that all values Knsd stayed the same). Then exactly the same classifi-

cation procedure as above (with 100 cross-validation iterations) was applied to the shuffled dataset

Figure 12. Cross-validated time-dependent classification accuracies of linear classifiers (black lines) given by the first three stimulus/decision/interaction

dPCs (columns) in each dataset (rows). Shaded gray regions show distribution of classification accuracies expected by chance as estimated by 100

iterations of shuffling procedure.
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to find mean classification accuracy for the first stimulus, decision, and interaction components. All

100 shuffling iterations resulted in a set of 100 time-dependent accuracies expected by chance.

The time periods when actual classification accuracy exceeded all 100 shuffled decoding accura-

cies in at least ten consecutive time bins are marked by black lines on Figures 3–6. Components

without any periods of significant classification are not shown. See Figure 12 for classification accu-

racies in each dataset. The Monte Carlo computations took ~ 8 hr for each of the larger datasets on

a 6 core 3.2 Ghz Intel i7-3930K processor.

Implementation of classical approaches (Figure 1)
The two-way ANOVA shown in Figure 1c–e was performed as follows. The two factors were stimulus

(with six levels) and decision (with two levels), the interaction term was included, and a separate

ANOVA was run for the firing rate of each neuron at each time point. Significance level was set at

a ¼ 0:05. Effect size was defined as partial omega squared with a sign given by the sign of the corre-

lation coefficient between firing rate and the corresponding parameter. It can take values between

�1 and 1, with 0 meaning no effect. For one-way ANOVA with a single two-level factor (which is a t-

test), it would reduce to the signed R2 between firing rate and factor level.

For Figure 1f–g, we ran linear regressions for the firing rate of each neuron at t ¼ 0:25 s and t ¼

3:75 s, taking F1 stimulus value in Hz as one predictor, decision as another one, and including an

interaction effect. Predictors were standardized (so regression coefficients in Figure 1g are stan-

dardized coefficients). The components shown in Figure 1f were constructed following the ’targeted

dimensionality reduction’ method presented in Mante et al. (2013) (see below for more details).

To compute the proportion of explained PSTH variance, we arranged the two components

(obtained by either method) into a matrix Z of 2� SQT size. Both the PSTH data matrix eX and Z

were centered by subtracting row means. Linear regression was used to find reconstruction weights

B ¼ eXZ>ðZZ>Þ�1 minimizing reconstruction error keX�BZk2. Then the proportion of explained vari-

ance was computed as R2 ¼ 1� keX�BZk2=keXk2.

The PCA on Figure 1i–k was done on the centered PSTH data matrix eX. Let its singular value

decomposition be eX ¼ USV>. Then each subplot on Figure 1j is a histogram of elements of one

column of U and each subplot on Figure 1j is one column of V.

Comparison of dPCA to PCA in each marginalization
To understand the differences of dPCA with respect to other (demixing) methods, we will make sev-

eral explicit comparisons. The first method we will consider is performing a series of standard PCAs

in each marginalization separately. This procedure can be understood in two ways: after performing

PCA on Xf and obtaining the matrix Uf for the k leading principal directions, we can use this matrix

to project either the marginalized data or the full data.

Figure 13. Toy example illustrating the pseudo-inverse intuition. (a) Firing rate trajectories of two neurons for

three different stimuli. (b) Same data with dPCA decoding and encoding axes. The encoding axes are

approximately equivalent to the axes of the principal components in this case.
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In the first case we obtain the principal components of the corresponding marginalization, UfXf.

However, while these components provide a particular decomposition or visualization of the data,

they do not constitute readouts of the neural activity, since they are based on projecting the margin-

alized data. One particular advantage of the dPCA formulation is that it operates on the raw data,

so that the decoders (and encoders) can actually be used on single trials. In turn, the visualization of

the data found through dPCA also provides insights into the utility of the respective population

code for the brain.

In the second case we obtain UfX components from the full data, so that these components

could be obtained by projecting single-trial activities. However, now there is no guarantee that these

components will be demixed. For a simple counter-example, consider Figure 13: the stimulus mar-

ginalization Xs consists of three points (one for each stimulus) located roughly on a horizontal axis,

and so the first principal axis of Xs is roughly horizontal. It is easy to see that the projection of the

full data onto this axis will be not only stimulus-, but also time-dependent.

Nonetheless, we can obtain a reasonable approximation to the dPCA solution using PCA in each

marginalization. Namely, Uf can be taken to constitute the encoders Ff. In turn, the decoders Df

are obtained by a pseudo-inverse D ¼ Uþ, where U is a matrix with 4k columns obtained by joining

together all Uf. We found that this procedure provides a close approximation of the actual decoder

and encoder matrices, provided one chooses a reasonable value of k: choosing k too small results in

poor demixing, and choosing k too large results in overfitting. In our datasets, k ¼ 10 provides a

good trade-off.

This approximate solution highlights the conditions under which dPCA will work well, i.e., result

in well-demixed components that capture most of the variance of the data: the main principal axes

of different marginalizations Xf need to be non-collinear. In other words, principal subspaces of dif-

ferent marginalizations should not overlap.

Comparison of dPCA with targeted dimensionality reduction
Next, we compare dPCA with ’targeted dimensionality reduction’ (TDR), the method proposed by

Mante et al. (2013). Briefly, the algorithm underlying TDR works as follows:

1. Perform PCA of the trial-average neural data eX and define a ’denoising’ matrix K as a linear
projector on the space spanned by the leading principal axes. Here we used 20 principal axes:

K ¼ U20U
>
20.

2. For each neuron i, regress its firing rate at each time point t on stimulus, decision, and interac-
tion between them:

Figure 14. Some demixed components as given by three different demixing methods (rows) in various datasets and marginalizations (columns). Empty

subplots mean that the corresponding method did not find any components. All projections were z-scored to make them of the same scale. Barplots

on the right show fractions of variance in each marginalization for each component (stimulus in blue, decision in red, interaction in purple, condition-

independent in gray): kdeXfk
2=kdeXk2. Barplots consisting of a single colour correspond to perfect demixing.
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xiðtÞ ¼ bo
i ðtÞþbs

i ðtÞsþbd
i ðtÞdþbsd

i ðtÞsdþ �;

where d is any suitable parametrization of decision, e.g. d¼�1, and s is stimulus value (e.g.
actual stimulation frequency in the somatosensory working memory task in monkeys).

3. Take N values of bs
i ðtÞ as defining an N-dimensional vector bsðtÞ, and analogously define bdðtÞ,

bsdðtÞ, and boðtÞ. Mante et al. (2013) did not use the condition-independent term boðtÞ in their
original study, but we treat it here on equal footing.

4. Project each bfðtÞ onto the space spanned by the leading PCA axes: KbfðtÞ:

5. For each of the three parameters select one vector bf
� ¼ Kbfðtf� Þ, where tf� is the time point at

which the norm of KbfðtÞ is maximal.

6. Finally, stack the obtained vectors to form a matrix B ¼ ½bs
� b

d
� b

sd
� bo

�� and perform QR decom-
position B ¼ QR with Q orthonormal and R upper triangular to find a set of three orthogonal
demixing axes (as columns of Q). If the individual vectors in B are far from orthogonal, then
the resulting axes will strongly depend on the order of stacking them into the matrix B. We
found that we obtain best results if we select this order ad hoc for each dataset; the orders we
used were stimulus ! decision ! interaction for the somatosensory working memory task,
stimulus ! interaction ! decision for the visuospatial working memory task, and interaction
! decision ! stimulus for both olfactory tasks. The vector boðtÞ was always used last.

We applied TDR to all our datasets and observed that dPCA consistently outperforms it in

terms of capturing variance and demixing task parameters. First, unlike dPCA, TDR yields only

one component per task parameter. Second, even this component tends to retain more mixed

selectivity than the corresponding dPCA component. Some representative components are shown

in Figure 14.

Comparison of dPCA with LDA
Linear Discriminant Analysis (LDA) is usually understood as a one-way technique: there is only one

parameter (class id) associated with each data point, whereas in this manuscript we dealt with three

parameters simultaneously. Therefore, LDA in its standard form cannot directly be applied to the

demixing problem. We can, however, use the same data and covariance decomposition

X¼
X

f

XfþXnoise C¼
X

f

CfþCnoise

that dPCA is using and construct a separate LDA for each marginalization f. To the best of our

knowledge, this framework does not have an established name, so we call it factorial LDA.

Let us first consider the case of finding demixed components for marginalization Xf. We will

denote the remaining part of the data matrix as X�f ¼ X�Xf and the remaining part of the covari-

ance matrix as C�f ¼ C�Cf. In turn, the goal of LDA will be to find linear projections that have

high variance in Cf and low variance in C�f. In LDA, these matrices are usually called between-class

and within-class covariance matrices (Hastie et al., 2009). The standard treatment of LDA is to maxi-

mize the multivariate signal-to-noise ratio

tr DCfD
>½DC�fD

>��1
� �

;

where D is the matrix with discriminant axes in rows. The well-known solution is that DLDA is given

by the leading eigenvectors of C�1
�fCf (stacked together as rows), or, equivalently, as eigenvectors

of C�1Cf.

More useful for our purposes is the reformulation of LDA as a reduced-rank regression problem

(Izenman, 2008; De la Torre, 2012). When classes are balanced, it can be formulated as

LLDA ¼ kGf�FDXk2;

where Gf is a class indicator matrix. This matrix has as many rows as there are possible values of

parameter f and specifies which data point is labeled with which parameter value: Gij ¼ 1 if the j-th

data point belongs to class i (has i-th value of the parameter f) and Gij ¼ 0 otherwise. In the toy

example shown in Figure 2, there are three classes with five points each, and so Gf will be a 3� 15
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matrix of zeros and ones. In this reformulation of LDA, the main interest is in the decoder matrix D,

whereas the encoder matrix F, which serves to map the low-dimensional representation onto the

class indicator matrix, plays only an auxiliary role.

In contrast, the dPCA loss function is

LdPCA ¼ kXf�FDXk2;

where Xf is the matrix of the same size as Gf with j-th column being the class centroid of the class

to which the j-th point belongs. This comparison highlights the difference between the two methods:

LDA looks for decoders that allow to reconstruct class identity (as encoded by Gf) whereas dPCA

looks for decoders that allow to reconstruct class means (as encoded by Xf). Figure 2b,f,h provides

a toy example of a situation when these two goals yield very different solutions: the LDA projection

separates the three classes better than the dPCA projection, but the dPCA projection preserves the

information about the distance between classes.

Using the explicit solution for reduced-rank regression, one can show that LLDA does indeed have

eigenvectors of C�1Cf as a solution DLDA for decoder (see Section 8.5.3 in Izenman, 2008). Follow-

ing the similar logic for LdPCA, one can derive the corresponding expression for the dPCA decoder:

DdPCA is given by the eigenvectors of C�1C2
f (personal communication with Maneesh Sahani).

A statistical test known as MANOVA can be seen as another possible factorial generalization of

LDA. Given the same data and covariance decomposition, MANOVA tests if the effect of f is statisti-

cally significant by analyzing eigenvalues of C�1
noiseCf. The eigenvectors of this matrix can in principle

serve as decoders, but these projections are optimized to separate the contribution of f from noise,

not from the contributions of noise and other parameters. Hence, MANOVA is not the appropriate

method for demixing purposes.

While the toy example of Figure 2 illustrates that dPCA and LDA will in principle have very

different solutions, we note that in all datasets considered here factorial LDA and dPCA yielded

very similar components. This may reflect several pecularities of the data: for instance, the popu-

lation activity for different values of the same parameter was spaced rather evenly, and all deci-

sions were binary. Nevertheless, we emphasize that dPCA is better suited for (demixed)

dimensionality reduction due to its focus on reconstructing the original data, as explained and

discussed in the Results (Figure 2).

Comparison of dPCA with previous versions
Demixed PCA as presented here is conceptually based on our previous work. Machens et al.

(2010) suggested a demixing method called difference of covariances (DOC) that can only han-

dle two parameters, e.g. stimulus s and time t. Given PSTHs xðs; tÞ, DOC first constructs stimulus-

dependent and time-dependent marginalizations �xðsÞ ¼ hxðs; tÞit and �xðtÞ ¼ hxðs; tÞis, and then

computes the difference between the stimulus and time covariance matrices Cs ¼ �xðsÞ�xðsÞ>
D E

and Ct ¼ �xðtÞ�xðtÞ>
D E

,

S¼Cs�Ct:

Eigenvectors of S with maximum (positive) eigenvalues correspond to directions with maximum

stimulus variance and minimum decision variance. Vice versa, eigenvectors with minimum (negative)

eigenvalues correspond to directions with maximum decision variance and minimum stimulus vari-

ance. In the toy example presented in Figure 2 DOC finds the axis that is very close to the first PCA

axis of class centroids (which is also very close to the dPCA encoder axis shown on the figure), pro-

viding worse demixing than both LDA and dPCA.

A possible extension of DOC to more than two parameters is described in Machens (2010). Here

the PSTHs are assumed to depend on M parameters, and the method constructs M marginalizations

by averaging over all parameters except one. The respective covariance matrices Cf are then

formed as above. The extension of DOC seeks to find the matrix of orthogonal directions U such

that

Kobak et al. eLife 2016;5:e10989. DOI: 10.7554/eLife.10989 31 of 36

Research Article Neuroscience

http://dx.doi.org/10.7554/eLife.10989


L¼
X

f

trðU>
fCfUfÞ

is maximized subject to U>U¼ I where U¼ ½U1:::UM �. For M ¼ 2 this can be shown to be equivalent

to the original DOC. Note that Machens (2010) did not address the interaction terms.

The connection between the current dPCA and the DOC approach can be made more explicit if

we consider the full covariance decomposition C ¼
P

f Cf and introduce into the dPCA loss func-

tion an additional constraint that both encoder and decoder should be given by the same matrix

with orthonormal columns: Ff ¼ D>
f ¼ Uf. Then

kXf�UfU
>
fXk2 ¼ kXf�UfU

>
fXfk

2 þkUfU
>
fX�fjj

2

¼ kXfk
2�kUfU

>
fXfjj

2 þkUfU
>
fX�fjj

2

~ � tr
�
U>

f ðCf�C�fÞUf

�
;

where the first equality follows from properties of the decomposition, the second equality from the

properties of the orthonormal matrices Uf, and the third equality uses the definition of the covari-

ance. This derivation shows that the difference of covariances Cf�C�f emerges from the dPCA

loss function if the decoder and encoder are given by the same set of orthogonal axes. However,

such axes Uf from different marginalizations f will in general not be orthogonal to each other,

whereas both DOC and its generalization insisted on orthogonal axes.

Both the original DOC and its extension ignored interaction terms. Brendel et al. (2011) intro-

duced interaction terms and the full covariance splitting C ¼
P

f Cf as described in this manuscript,

and developed a probabilistic dPCA model based on probabilistic PCA (PPCA); to remove ambiguity

we call this method dPCA-2011. Similar to PPCA, dPCA-2011 assumes that the data are described

by a linear model with Gaussian residuals, i. e.

pðxjzÞ ¼NðWz;s2IÞ;

but the prior over the components z is chosen such that the components are sparsely distributed

over marginalizations. In other words, the prior is chosen such that those components are favored

that have variance in only one marginalization. Under the constraint that decoding directions W are

orthogonal, the model can be fit using the expectation-maximization algorithm. However, the proba-

bilistic formulation of Brendel et al. (2011) still suffers from the orthogonality constraint. As

explained in the Discussion, the orthogonality constraint is too rigid and can prevent successful dem-

ixing if parameter subspaces are sufficiently non-orthogonal. Indeed, we applied dPCA-2011 to all

our datasets and observed that dPCA-2015 showed better demixing (Figure 14). Moreover, dPCA-

2011 failed to find any decision components in the visuospatial working memory task.

In addition, the formulation of dPCA in this manuscript is radically simplified compared to

Brendel et al. (2011), features an analytic solution and is easier to compare with other linear

dimensionality reduction techniques.

Figure 15. Fourier-like artifacts in PCA. (Left) In this toy example, single neuron responses are generated from the same underlying Gaussian but are

randomly shifted in time. (Right) First three PCA components of the population data. While the leading component resembles the true signal, higher

order components look like higher Fourier harmonics. They are artifacts of the jitter in time.

DOI: 10.7554/eLife.10989.020
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Appendix A. Mathematical properties of the marginalization procedure
Above we presented marginalization procedure for three parameters. In order to generalize it for an

arbitrary number of parameters, we introduce a more general notation. We denote as 	 the set of

parameters (in the previous section 	 ¼ ft; s; dg; note that the trial index is not included into 	) and

write �x to denote a decomposition term that depends on a subset of parameters  � 	. In particu-

lar, �x; ¼ �x. In full analogy to the 3-parameter case, each term can be iteratively computed via

�x ¼
D
x�

X

t� 

�xt

E
	n 

¼ hxi	n �
X

t� 

�xt;

where h�i	n denotes averaging over all parameters that are not elements of  and averaging over

the trial index. This equation can be rewritten in a non-iterative way by expanding the sum; this

yields the expression with alternating signs that is similar to our ANOVA-style equations above:

�x ¼
X

t� 

ð�1Þjtj � hxið	n Þ[t: ($)

One can verify that this formula correctly describes the 3-parameter case presented above; the gen-

eral case can be proven by induction. The noise term is defined via

xnoise ¼ x�
X

 

�x ¼ x�hxi;:

This decomposition has several useful properties. First, the average of any marginalization �x over

any parameter g 2 is zero. This can be seen from the equation ð$Þ because after averaging over g all

terms will split into pairs with opposite signs (indeed, for each t3 g there is another t0 ¼ t ng). Second,

all marginalizations are pairwise uncorrelated, i.e. their covariance is zero: h�x �x�i	 ¼ 0. This can be

seen from equation ð$Þ because �x and �x� both consist of an even number of terms with alternating

signs, so their product will also consist of an even number of terms with alternating signs, and after

averaging over 	 all terms will become equal to ��x2 and cancel each other. Third, from the definition

of the noise term it follows that any marginalization �x is uncorrelated with the noise term:

h�x �xnoisei	 ¼ 0.

The fact that all marginalizations and the noise are pairwise uncorrelated allows to segregate the

variance of x (here we assume that x is centered, i.e. �x ¼ 0):

var½x� ¼ hx2i	 ¼
D�X

 

�x þ xnoise

�2E
	
¼
X

 

h�x i	 þhx2noisei	 ¼
X

 

var½�x � þvar½xnoise�:

Turning now to the multivariate case, if we replace x with x2RN , everything remains true but var-

iances should be replaced by covariance matrices:

C¼ hxx>i	 ¼
X

 

C þCnoise:

Note that in ANOVA literature one usually talks about decomposing sums of squares
P

x2 and in

MANOVA literature about decomposing scatter matrices
P

xx>, because (co)variances of different

terms are computed from these sums using different denominators (depending on the correspond-

ing number of degrees of freedom) and do not add up. We do not make this distinction and prefer

to talk about decomposing the (co)variance, i.e. all (co)variances here are defined with the same

denominator equal to the total number of sample points.

Appendix B. Fourier-like components from temporal variations
Consider the decision components in the somatosensory working memory task, Figure 3. Here the

second and the third components are closely resembling the first and second temporal derivatives

of the leading decision component. To illustrate why these components are likely to be artifacts of

the underlying sampling process, consider a highly simplified example in which a population of N

neurons is encoding a one-dimensional bell-shaped signal zðtÞ in the population vector a, i.e the
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population response is given by yðtÞ ¼ azðtÞ. In this case, the population response lies in the one-

dimensional subspace spanned by a and the covariance matrix has rank one:

C¼ hyðtÞy>ðtÞit ¼ aa>hzðtÞ2it:

Now consider the case in which the neurons are not recorded simultaneously but are pooled

from different sessions. In behavioural experiments it is unavoidable that the onset of (self-timed)

neural responses will vary by tenths or hundreds of milliseconds. Hence, the individual response yiðtÞ

of neuron i will experience a small time-shift ti so that yiðtÞ ¼ aizðtþ tiÞ, see Figure 15 for an example

with Gaussian tuning curves. If ti is small we can do a Taylor expansion around t,

yiðtÞ ¼ aizðtÞþ aitiz
0ðtÞþOðt2i Þ:

where we neglect higher-order corrections for simplicity, but the extension is straight-forward. Let t

be the vector of time-shifts of all neurons and let b¼ a � t be the element-wise vector product of a

and t, i.e. ½a � t�i ¼ aiti. Then the population response can be written as

yðtÞ»azðtÞþbz0ðtÞ:

Hence, the covariance matrix becomes approximately

C»aa>hz2ðtÞit þbb>hz02ðtÞit;

where we assumed for simplicity that a? b. In other words, time-shifts between observations will

result in additional PCA components that roughly resemble the temporal derivatives of the source

component.

Data and code
The dPCA code is available at http://github.com/machenslab/dPCA for Matlab and Python. All four

datasets used in this manuscript have been made available at http://crcns.org (Romo et al., 2016;

Constantinidis et al., 2016; Feierstein et al., 2016; Uchida et al., 2016). Our preprocessing and

the main analysis scripts (Matlab) are available at http://github.com/machenslab/elife2016dpca.
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